Comparación de modelos de clasificación: regresión logística y árboles de clasificación para evaluar el rendimiento académico

Se comparan dos modelos de clasificación llamados regresión Logística Binaria y Arboles de clasificación (CHAID) para evaluar el rendimiento académico. El comportamiento de estos modelos fue medido por cuatro indicadores: Sensibilidad, Curva ROC, Índice de GINI e Índice de Kappa en base al poder de clasificación y predicción de los modelos obtenidos sobre rendimiento académico. Encuentra que Arboles de clasificación es el mejor modelo por tener mayor poder de clasificación y predicción. Para el análisis se utiliza una base de datos sobre estudiantes universitarios del primer semestre matriculado en el curso de Matemática, obtenido de un repositorio de Machine Learning. / Tesis

Identiferoai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/7122
Date January 2017
CreatorsLizares Castillo, Mónica
PublisherUniversidad Nacional Mayor de San Marcos
Source SetsUniversidad Nacional Mayor de San Marcos - SISBIB PERU
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/bachelorThesis
Formatapplication/pdf
SourceUniversidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM
Rightsinfo:eu-repo/semantics/openAccess, https://creativecommons.org/licenses/by-nc/3.0/

Page generated in 0.002 seconds