Air contamination strongly decreases the efficiency of fluid power systems and when the allowable limits are exceeded, the performance of the system deteriorates. The hydraulic reservoir performs the function of releasing the entrained air of the hydraulic system to the surroundings. In recent years, the reservoir design has become an important task in the design of the hydraulic system due to space restrictions forcing the use of small sized reservoirs. Despite this fact, experimental results on an air release are not available. In this paper, an experimental investigation of the air release in hydraulic reservoirs is presented. A test apparatus using an optical method as well as the post-processing of the results is described. These are given in terms of an air release rate for different reservoir designs over a wide range of oil flow rates and air loads. The current study is a significant step forward in the design of fluid power systems, as it provides an experimental procedure to measure the air release in the hydraulic reservoir as well as its quantitative analysis.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29337 |
Date | January 2016 |
Creators | Longhitano, Marco, Protase, Alessandro, Murrenhoff, Hubertus |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 1, pp. 597-608 |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-196933, qucosa:29237 |
Page generated in 0.0018 seconds