CFD Simulation and Measurement of Flow Forces Acting on a Spool Valve

Directional control valves are widely used in hydraulic systems to control the flow direction and the flow rate. In order to design an actuator for such a valve a preliminary analysis of forces acting on the spool is necessary. The dominant axial force is the so called steady flow force, which is analysed within this study. For this purpose a 2/2-way spool valve with a sharp control edge was manufactured and investigated. CFD simulations were carried out to visualize the fluid flow inside the valve. The measured and simulated axial forces and pressure drops across the test valve are compared and show good qualitative correlation. However, the simulated values of axial forces are in average by 32 % lower compared with the measured ones. Therefore, the components of the axial force were scrutinized revealing a dominancy of the pressure force acting on ring areas in the spool chamber. Although CFD simulations are preferably used to save resources, the results of this study emphasise the importance of the experiments.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29374
Date January 2016
CreatorsBordovsky, Patrik, Schmitz, Katharina, Murrenhoff, Hubertus
ContributorsDresdner Verein zur Förderung der Fluidtechnik e. V.
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Source10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 2, pp. 473-484
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa-196941, qucosa:29238

Page generated in 0.0021 seconds