Focusing on reducing the air consumption of an air flotation rail system, a flowrate-amplified flotation element was recently developed. This new flotation element ulitises the rotational flow to intake extra air via an intake hole, and thus, effectively improves the flotation height. Compared to a conventional flotation element, the flowrate-amplified flotation element can reduce air consumption by approximately 50% for the same load and flotation height. To gain an understanding of the flow phenomenon in the flowrate-amplified flotation element, experiments and CFD simulations are conducted in this study. Based on the results, we found that the flowrate-amplified flotation element could take a part of the kinetic energy of the rotating air to suck in extra air. The intake hole greatly affects the pressure field and velocity field of the flotation element. Additionally, the effects of the variant gap height and supplied flow rate were also discussed. The results indicate that the pressure distribution decreases as the gap height increases and increases as the supplied flow rate increases.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29397 |
Date | January 2016 |
Creators | Xinzhe, Wang, Xin, Li |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V. Dresden |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 3, pp. 293-304 |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-197655, qucosa:29251 |
Page generated in 0.0024 seconds