Return to search

Experimentelle und theoretische Untersuchungen zum integrierten Gas-Dampf-Prozess für lastflexible Kraft-Wärme-Kopplung

Der integrierte Gas-Dampf (GiD-) Prozess mit Wasserrückgewinnung ist ein flexibler Kraft-Wärme-Kopplungsprozess, der die gleichzeitige Bereitstellung von Strom und Wärme teilweise entkoppeln kann. Der effiziente und sparsame Einsatz von fossilen Brennstoffen ist aus ökonomischer wie auch ökologischer Sicht geboten. Die Kraft-Wärme-Kopplung (KWK), die gleichzeitige Erzeugung von Strom und Wärme, ist eine Möglichkeit dafür. Allerdings erfordert die KWK auch eine gleichzeitige Abnahme von Strom und Wärme beziehungsweise deren Speicherung. Sowohl Strom als auch Prozessdampf lassen sich nur aufwendig und damit relativ teuer speichern, weshalb Alternativen gefragt sind.

Der GiD-Prozess besteht aus einer Gasturbine mit nachgeschaltetem Abhitzedampfkessel. Die Gasturbine verfügt als Besonderheit über eine Dampfinjektion, die vor, nach oder direkt in die Brennkammer erfolgen kann. Der Abhitzekessel hat zusätzliche Wärmeübertragerflächen um das Abgas bis unter den Taupunkt abzukühlen. Somit kann ein Teil des injizierten Dampfes aus dem Abgas zurückgewonnen und wiederverwendet werden. Der in die Gasturbine injizierte Dampf führt dieser weitere Energie zu. Diese kann entweder zur Leistungssteigerung der Anlage oder zur Reduzierung des fossilen Brennstoffbedarfes genutzt werden. Die erste Option der Leistungssteigerung ist auch als Cheng-Prozess bekannt. Diese Arbeit widmet sich der weniger untersuchten zweiten Möglichkeit der Brennstoffreduzierung.

Beim Vergleich des GiD-Prozesses mit verschiedenen anderen Kraftwerks-Prozessen zeigt sich, dass dieser besonders gut für industrielle Anlagen mit Prozessdampfbedarf und einer elektrischen Leistung kleiner 20 MW el geeignet ist. Im Rahmen dieser Arbeit wurde der GiD-Prozess mittels einer Versuchsanlage auf Basis einer Industriegasturbine mit 650 kW el untersucht. Die Arbeit dokumentiert verschiedene Versuchsfahrten und Untersuchungen an dieser Anlage. Die Injektion von Dampf reduziert die Schadstoffemissionen in den zulässigen Bereich und kann sehr flexibel zu einer Steigerung des Anlagenwirkungsgrades von bis zu zwei Prozent führen. Dabei wird der Dampf sehr gleichmäßig in die Versuchsanlage eingebracht, so dass keine signifikanten Änderungen der Abgastemperaturverteilung erkennbar sind. Die Überhitzung des Dampfes kann zu einer weiteren Steigerung des Anlagenwirkungsgrades führen. Die Rückgewinnung des eingebrachten Dampfes ist mit den entsprechenden Wärmeübertragern möglich. Das zurückgewonnene Wasser ist durch die Stickoxide des Abgases verunreinigt und muss entsprechend aufbereitet werden.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29738
Date01 November 2016
CreatorsSteinjan, Karl
ContributorsGampe, Uwe, Zschunke, Tobias, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds