Return to search

Super-stretchable paper-based materials for 3D forming

Paper is renewable, recyclable, sustainable and biodegradable material and, as a result, paper-based materials are widely used in the world packaging market. However, paper-based materials cannot compete with plastics in terms of processability into various 3D shapes. This is due to poor formability of paper, which is closely associated with its toughness. To improve paper formability, we report on a facile and green method that combines fiber and paper mechanical modifications at different structural levels as well as biopolymer treatment via spraying. As a result, a remarkable elongation of ∼30% was achieved after proposed combined approach on the laboratory scale. At the same time, a significant increase in tensile strength and stiffness (by ∼306% and ∼690%, respectively) was observed. Overall, an inexpensive, green, and scalable approach is introduced to improve formability of fiber networks that in turn allows preparation of 3D shapes in the processes with fixed paper blanks such as vacuum forming, hydroforming, hot pressing, etc.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:31040
Date30 May 2018
CreatorsKhakalo, Alexey, Kouko, Jarmo, Retulainen, Elias, Rojas, Orlando J.
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
SourceVVD 2018 Verarbeitungsmaschinen und Verpackungstechnik - Verarbeitung & Verpackung 4.0 : 9. wissenschaftliche Fachtagung am 15./16. März in Dresden/Radebeul
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa-235377, qucosa:30968

Page generated in 0.0017 seconds