Return to search

Gateway Adaptive Pacing for TCP across Multihop Wireless Networks and the Internet

In this paper, we introduce an effective congestion control scheme for TCP over hybrid wireless/wired networks comprising a multihop wireless IEEE 802.11 network and the wired Internet. We propose an adaptive pacing scheme at the Internet gateway for wired-to-wireless TCP flows. Furthermore, we analyze the causes for the unfairness of oncoming TCP flows and propose a scheme to throttle aggressive wired-to-wireless TCP flows at the Internet gateway to achieve nearly optimal fairness. Thus, we denote the introduced congestion control scheme TCP with Gateway Adaptive Pacing (TCP-GAP). For wireless-to-wired flows, we propose an adaptive pacing scheme at the TCP sender. In contrast to previous work, TCP-GAP does not impose any control traffic overhead for achieving fairness among active TCP flows. Moreover, TCP-GAP can be incrementally deployed because it does not require any modifications of TCP in the wired part of the network and is fully TCP-compatible. Extensive simulations using ns-2 show that TCPGAP is highly responsive to varying traffic conditions, provides nearly optimal fairness in all scenarios and achieves up to 42% more goodput than TCP NewReno.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:32525
Date17 December 2018
CreatorsElRakabawy, Sherif M., Klemm, Alexander, Lindemann, Christoph
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1-59593-477-4

Page generated in 0.0026 seconds