Return to search

Millimeter-Wave Hybrid Beamforming Based on Implicit Channel State Information

Millimeter wave (mmWave) spectrum above 30 GHz offers us an opportunity to pursue high-data-rate transmission using a channel bandwidth up to several gigahertz. To provide reliable link quality in mmWave frequency bands, hybrid analog-digital beamforming plays a crucial role in overcoming severe path loss and, meanwhile, satisfies the demand for low-power-consumption radio frequency (RF) devices.
Implementing hybrid beamforming based on available channel state information (CSI) is a common solution in the hybrid beamforming literature. However, many reference methods underestimate the computational complexity of channel estimation for large antenna arrays or subsequent steps, such as the singular value decomposition of a channel matrix. To this end, we present a low-complexity scheme that exploits implicit channel knowledge to facilitate the design of hybrid beamforming for frequency-selective
fading channels.
We start from the study of channel estimation using the orthogonal matching pursuit (OMP) algorithm and realize that the problems of channel estimation and analog beam selection are equivalent if the candidates for analog beamforming vectors in the codebooks are mutually orthogonal. This implies that when orthogonal codebooks are employed,
the observations used in channel estimation for large antenna arrays can be used to implement hybrid beamforming directly. The above-mentioned observations can be regarded as \textbf{implicit CSI}; they are coupling coefficients of all possible pairs of analog beamforming vectors on both sides of the channel.
The idea of using implicit CSI to implement hybrid beamforming is further extended to the cases of non-orthogonal codebooks. Instead of calculating the mutual information between the transmitter and receiver, we focus on small-size coupling matrices between beam patterns selected by using appropriate key parameters as performance indicators.
Therefore, the proposed hybrid beamforming method becomes much simpler: it amounts to collecting different sets of large-power coupling coefficients to construct multiple alternatives to an effective channel matrix. Then, the set yielding the largest Frobenius norm (or the largest absolute value of the determinant) of the effective channel provides
the solution to the hybrid beamforming problem.
The proposed hybrid beamforming approach clearly shows that the performance of hybrid beamforming is dominated by the quality of the coupling coefficients. Considering a fixed-length training sequence, we exploit mmWave channels' sparsity shown in the delay and angular domains to refine the quality of the coupling coefficients as well as to improve the hybrid beamforming performance.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:32749
Date19 January 2019
CreatorsChiang, Hsiao-Lan
ContributorsFettweis, Gerhard, Kühn, Volker, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1109/PIMRC.2016.7794710, 10.1109/ISWCS.2016.7600852, 10.1109/WoWMoM.2016.7523581, 10.1109/ICASSP.2017.7952782, 978-3-8007-4394-0, 10.1109/JSTSP.2018.2826142, 10.1109/ICC.2018.8422255, 10.1109/ICC.2018.8422257

Page generated in 0.003 seconds