Return to search

Entwicklung eines Verfahrens zur zerstörungsfreien Messung der Faserorientierung in mehrlagigen 3D-Carbonfaserpreforms und CFK mit robotergeführter Hochfrequenz-Wirbelstromprüftechnik

Carbonfaserverstärkten Kunststoffen (CFK) erzielen ihre herausragende Festigkeit und Steifigkeit durch exakte Anpassung der Faserverläufe im Bauteil an die im Einsatz wirkenden Belastungen. Für eine Qualitätskontrolle und eine Optimierung der Fertigungsverfahren ist daher ein Verfahren notwendig, das in der Lage ist, die Faserorientierung in 3D-Preforms (mehrlagigen, drapierten Vorformlingen aus trockenen Carbonfasern) und 3D-CFK zerstörungsfrei zu messen und mit der Soll-Faserorientierung zu vergleichen. Die derzeit für die Faserorientierungsmessung eingesetzten optischen bzw. Röntgen-CT-Verfahren sind hierfür nur beschränkt geeignet, da optische Verfahren auf die oberste Lage und Röntgen-CT-Verfahren auf Kleinproben beschränkt sind.
In dieser Arbeit wird daher ein Verfahren entwickelt, das die Faserorientierung in mehrlagigen 3D-Carbonfaserpreforms und -CFK zerstörungsfrei messen kann. Grundlage hierfür ist die Hochfre-quenz-Wirbelstromprüfung, die eine Darstellung der Verläufe der leitfähigen Carbonfäden in den einzelnen, übereinander gestapelten Lagen des CFK erlaubt. Um hierauf aufbauend eine vollauto-matische Faserorientierungsmessung zu schaffen, wird in einem ersten Schritt ein Roboter-Bahnplanungsverfahren zur vollständigen Erfassung komplex geformter 3D-Oberflächen entwi-ckelt. Aus dem erhaltenen 3D-Wirbelstrombild der Oberfläche wird anschließend über einen auf lokaler Abwicklung und Fouriertransformation beruhenden Algorithmus die lokale Faserorientie-rung in den einzelnen Lagen gemessen und die 3D-Verläufe einzelner Fäden werden rekonstruiert.
Die Messunsicherheit des Verfahrens wird anhand systematischer experimenteller Untersuchungen an 2-, 4-, 6- und 8-lagigen 2D-Gelegestapeln quantifiziert. Untersucht wird hierbei auch der Einfluss der Materialparameter (Gelegetyp) sowie der Messparameter (Spulenanordnung, Spulendurch-messer, Sensororientierung, Messfrequenz) auf die sich ergebende Messunsicherheit, woraus Empfehlungen für die Wahl von Sensor und Messfrequenz abgeleitet werden.
Das entwickelte Messverfahren wird anschließend an zwei 3D-Anwendungsfällen validiert. Als erster Anwendungsfall wird ein vierlagiges, komplex geformtes CFK-Bauteil betrachtet. Es wird gezeigt, wie mithilfe des entwickelten Messverfahrens die Faserorientierung aller vier Lagen zerstörungsfrei erfasst werden kann. Verschiedene Exemplare desselben Bauteils werden hinsicht-lich der Faserorientierung verglichen. Anschließend wird im zweiten Anwendungsfall ein automati-scher Drapierprozess zu einer Halbkugel betrachtet, bei dem verschiedene, ein-, zwei und vierlagi-ge textile Halbzeuge hinsichtlich der sich ausbildenden Faserorientierung nach der Drapierung verglichen werden, mit dem Ziel, das Verformungsverhalten mehrlagiger Strukturen besser zu verstehen und Empfehlungen für die Halbzeugauswahl abzuleiten.
In einem abschließenden Schritt werden Schnittstellen geschaffen, um die Faserorientierungsmes-sung in den CFK-Entwicklungsprozess zu integrieren. Zum einen wird durch eine Schnittstelle zur Drapiersimulation ein quantitativer Vergleich zwischen vorausgesagter und Ist-Faserorientierung möglich, zum anderen wird gezeigt, wie die gemessenen Faserorientierungen der Einzellagen direkt zur Parametrierung von Struktursimulationen verwendet werden können. Das entwickelte Verfah-ren ermöglicht damit eine fundierte Festigkeits- und Steifigkeitsanalyse mit den zerstörungsfrei gemessenen Faserorientierungen nach dem Umformprozess.:1 Einleitung
2 Grenzen bestehender Verfahren zur Faserorientierungsmessung bei der CFK-Herstellung
3 Stand der Technik zur Wirbelstromprüfung von Carbonfasermaterialien
4 Entwicklung einer Roboter-Bahnplanung zur vollständigen Erfassung einer 3D-Oberfläche
5 Entwicklung einer Faserorientierungsmessung aus 3D-Wirbelstromdaten
6 Experimentelle Untersuchung der Messunsicherheit an 2D-Gelegestapeln
7 Verfahrenserprobung an mehrlagigen 3D-Preforms und CFK
8 Integration der Faserorientierungsmessung in den CFK-Entwicklungsprozess
9 Zusammenfassung und Ausblick / The superior strength and stiffness of carbon fiber reinforced plastics (CFRP) results from an exact adaptation of the component’s fiber orientation to the external loads during service. Quality control, as well as development and optimization of the production processes, thus require a method to non-destructively measure the fiber orientation in 3D preforms (draped multilayer stacks made of dry carbon fibers) and CFRP. Currently, this fiber orientation measurement is done by optical or X-ray computer tomography methods, which are limited, however to the uppermost, optical visible fabric layer (optical methods) or to small sample sizes (X-ray computer tomography).
Therefore, this thesis develops a method to non-destructively measure the 3D fiber orientation in multi-layer 3D preforms and CFRP. The starting point for this development is the technique of high-frequency eddy current testing, which allows an imaging of the individual carbon yarn courses in multiple stacked textile layers. In order to develop a fully-automated fiber orientation measure-ment process with this technique, in a first step a robot path planning is developed that allows the complete scanning of a complexly-shaped 3D surface with an eddy current sensor. From the resulting 3D eddy current image of the surface, the local fiber orientation of the individual layers is measured by local development (flattening) of the surface and a Fourier transformation.
The uncertainty of measurement for this method is quantified from experiments with 2-, 4-, 6- and 8-layer 2D non-crimp fabric stacks. The influence of the material parameters (type of fabric) as well as of the measurement parameters (sensor type, coil diameter, sensor orientation, measure-ment frequency) is evaluated. Recommendations for the choice of sensor and measurement frequency are derived.
The developed measurement method is subsequently validated with two different 3D application cases. As a first application case, a four-layer, complexly-shaped CFRP component is analyzed. It is shown how the developed measurement method can be used to non-destructively measure the fiber orientation of all four layers. Different specimen of the same CFRP component are compared regarding fiber orientation. The second application case is an automated draping process to a hemispherical shape, for which one-, two- and four-layer textile fabrics are compared regarding the fiber orientation after draping, in order to better understand the forming properties of multi-layer structures and derive recommendations for the choice of textile.
In the final step, software interfaces are developed to integrate the fiber orientation measurement into the CFRP design and development process. It is integrated with a draping simulation, to allow a quantitative comparison of the predicted and the measured fiber orientations. Furthermore, it is shown how the measured fiber orientation of the individual fabric layers can be used for the parametrization of finite element structural simulations. The developed measurement method thus lays the base for a substantiated strength and stiffness analysis based on the component’s actual as-is fiber orientation after the draping process.:1 Einleitung
2 Grenzen bestehender Verfahren zur Faserorientierungsmessung bei der CFK-Herstellung
3 Stand der Technik zur Wirbelstromprüfung von Carbonfasermaterialien
4 Entwicklung einer Roboter-Bahnplanung zur vollständigen Erfassung einer 3D-Oberfläche
5 Entwicklung einer Faserorientierungsmessung aus 3D-Wirbelstromdaten
6 Experimentelle Untersuchung der Messunsicherheit an 2D-Gelegestapeln
7 Verfahrenserprobung an mehrlagigen 3D-Preforms und CFK
8 Integration der Faserorientierungsmessung in den CFK-Entwicklungsprozess
9 Zusammenfassung und Ausblick

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:33892
Date02 May 2019
CreatorsBardl, Georg
ContributorsCherif, Chokri, Modler, Niels, Technische Universität Dresden
PublisherVerlag Dr. Hut GmbH
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds