Return to search

Single-cell diffraction tomography with optofluidic rotation about a tilted axis

Optical diffraction tomography (ODT) is a tomographic technique that can be used to measure the threedimensional (3D) refractive index distribution within living cells without the requirement of any marker. In principle, ODT can be regarded as a generalization of optical projection tomography which is equivalent to computerized tomography (CT). Both optical tomographic techniques require projection-phase images of cells measured at multiple angles. However, the reconstruction of the 3D refractive index distribution post-measurement differs for the two techniques. It is known that ODT yields better results than projection tomography, because it takes into account diffraction of the imaging light due to the refractive index structure of the sample. Here, we apply ODT to biological cells in a micro uidic chip which combines optical trapping and microfluidic flow to achieve an optofluidic single-cell rotation. In particular, we address the problem that arises when the trapped cell is not rotating about an axis perpendicular to the imaging plane, but instead about an arbitrarily tilted axis. In this paper we show that the 3D reconstruction can be improved by taking into account such a tilted rotational axis in the reconstruction process.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35046
Date29 August 2019
CreatorsMüller, Paul, Schürmann, Mirjam, Chan, Chii J., Guck, Jochen
PublisherSPIE
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1117/12.2191501, info:eu-repo/grantAgreement/European Union/Seventh Framework Programme/282060/

Page generated in 0.0022 seconds