Mathematical modeling, simulation and validation of the dynamic yarn path in a superconducting magnet bearing (SMB) ring spinning system

The new concept of a superconducting magnetic bearing (SMB) system can be implemented as a twisting element instead of the existing one in a ring spinning machine, thus overcoming one of its main frictional limitations. In the SMB, a permanent magnet (PM) ring rotates freely above the superconducting ring due to the levitation forces. The revolution of the PM ring imparts twists similarly to the traveler in the existing twisting system. In this paper, the forces acting on the dynamic yarn path resulting from this new technology are investigated and described with a mathematical model. The equation of yarn movement between the delivery rollers and the PM ring is integrated with the Runge-Kutta method using MATLAB. Thus, the developed model can estimate the yarn tension and balloon form according to different spindle speeds considering the dynamic behavior of the permanent magnet of the SMB system. To validate the model, the important relevant process parameters, such as the yarn tension, are measured at different regions of the yarn path, and the balloon forms are recorded during spinning with the SMB system using a high speed camera.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35492
Date05 November 2019
CreatorsHossain, M., Telke, C., Sparing, M., Abdkader, A., Nocke, A., Unger, R., Fuchs, G., Berger, A., Cherif, C., Beitelschmidt, M., Schultz, L.
PublisherSage
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1746-7748, 10.1177/0040517516641363

Page generated in 0.0023 seconds