A multi-layered variable stiffness device based on smart form closure actuators

This contribution describes the properties and limitations of multi-layered mechanical devices with variable flexural stiffness. Such structures are supposed to be components of new smart, self-sensing and self-controlling composite materials for lightweight constructions. To enable a proper stiffness control, reliable actuators with high actuation capabilities based on smart materials are used. Those actuators are either driven by electroactive polymers (EAPs) or shape memory alloy (SMA) wires. They control the area moment of inertia of the multi-layered bending structures. To change the area moment of inertia and, hence, the flexural stiffness of an multi-layered beam within a wide range, it is necessary to stack as many layers as possible over each other. The fundamental function of this approach is demonstrated with a three-layer stack consisting of three independent layers and four form closure actuators driven by SMAs. This experimental set-up was able to change its bending stiffness k by a factor of 14.6, with a minimum and maximum stiffness of kmin = 0.11 N mm¯¹ and kmax = 1.73 N mm¯¹, respectively. The usage of four independently controllable actuators yields nine independent flexural-stiffness states of the beam. Both analytical and numerical calculations have shown good agreement with the measured stiffness values.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35622
Date09 October 2019
CreatorsHenke, M., Gerlach, G.
PublisherSage
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1530-8138, 10.1177/1045389X15577645

Page generated in 0.0045 seconds