Return to search

Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots

The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36419
Date13 January 2020
CreatorsOsipovich, Nikolai P., Poznyak, Sergei K., Lesnyak, Vladimir, Gaponik, Nikolai
PublisherRoyal Society of Chemistry
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1463-9084, 10.1039/c6cp01085g

Page generated in 0.0025 seconds