In the framework of this thesis, a study was conducted dealing with a strategy to change the mechanical properties of microgel particles using inwards-interweaving self-assembly post-synthesis. This technique was invented by my cooperation partners of the Trau group, and they prepared all particles studied. Exemplarily, agarose microparticles were used to interweave a defined shell of complexed poly(allylamine) (PA) and poly(styrenesulfonic acid) (PSS) into such particles. Thereby, the shell thickness can be well-defined. Adjusting the concentration of PA and the incubation time, the filling of the particles can be readily controlled up to complete filling. By adding excessive PSS, the diffusion-controlled shell formation stops by complexation. The shell thickness of individual particles was determined through fluorescence-labeled PA and confocal laser scanning microscopy. The mechanical properties of single particles were inferred by AFM with an attached colloidal probe (CP). Here, a non-linear increase of the elastic modulus (E-modulus) from 10 to 190 kPa was determined while the shell thickness increased from 10 to 24 µm. After adding a second shell, a further gain to 520 kPa on average can be realized.
Furthermore, a new concept was developed by Mr. Fery and me to change the surface mechanical properties of mircogel particles by applying a thermal trigger. Meanwhile, a particular focus was laid to maintain constant adhesive properties at every temperature. First, crosslinked poly(N-isopropyl acrylamide) (PNIPAM) particles are prepared by droplet microfluidics. These gelled particles are injected into a second microfluidic device and surrounded by an aqueous solution of uncrosslinked poly(acrylamide) (PAAM). At a second junction, droplets are formed via the cut-off effect of the continuous organic solvent. The droplets now contain the crosslinked PNIPAM core and a thin uncrosslinked PAAM liquid shell. After a short diffusion of PAAM polymers into the core they are crosslinked by UV-light. These experiments were performed by our cooperation partners of the Seiffert group. I applied temperature-controlled CP-AFM to obtain the resulting adhesive and mechanical properties of individual particles. Here, the core-shell particles behaved similarly to plain PNIPAM particles displaying the typical increase in E-modulus at temperatures above 34°C, however lower in magnitude. Further, no temperature effect on the interfacial interaction for these core-shell particles was detected.
While one focus of the study above was on constant adhesion, in the following section, a new synthetic approach for mussel inspired underwater adhesives, and their characterization is presented. Based on a peptide sequence of ten amino acids, which is found frequently in natural mussel foot proteins, a new polymerization route was developed by my cooperation partners of the Börner group. Possible reaction pathways were investigated with specifically designed model reaction and analyzed using mass spectroscopy and gel permeation chromatography. The resulting polymers were further characterized using high-performance liquid chromatography and SDS-page. Nanometer thick coatings of these synthetic polymers revealed an excellent persistence even against highly concentrated salt solutions measured by quartz crystal microbalance with dissipation experiments. My contribution was the investigation of the work of adhesion necessary to detach a microparticle from such a coating by CP-AFM in an aqueous environment. Here, the newly developed synthetic polymer provided higher adhesive strength, up to 10.9 mJ m- 2, compared to comparable natural mussel foot proteins. / Im Rahmen dieser Arbeit, wurde eine Studie durchgeführt, welche die Möglichkei¬ten der nachträglichen Elastizitätsveränderung von Mikrogelpartikeln mittels „nach Innen gerichteter, verwebender Selbstassemblierung“ (engl. inwards-interweaving self-as¬sembly) beleuchtet. Diese Technik wurde von meinen Kooperationspartnern aus der Gruppe von Herrn Trau entwickelt. Am Bespiel von Agarose Mikropartikeln, kann mittels dieser Technik eine definierte Schale aus Polyallylamin (PA) und Polystyrolsulfonsäure (PSS) in das Partikel verwoben werden. Die Schalendicke kann dabei kontrolliert variiert werden, bis hin zur vollständigen Ausfüllung des Partikels, in dem die Konzentration von PA und die Inkubationszeit angepasst werden. Durch Zugabe eines Überschusses an PSS wird der diffusionsgesteuerte Schalenaufbau durch Komplexierung beendet. Die Schalendicke der individuellen Partikel wurde mittels Fluoreszenzmarkierung und konfokaler Laser Raster¬mikroskopie (engl. confocal laser scanning microscopy) ermittelt. Die mechanische Cha¬rakterisierung einzelner Partikel durch AFM und kolloidaler Sonde (engl. colloidal probe, CP) ergab eine nicht lineare Erhöhung des Elastizitätsmoduls (E-Modul) von 10 auf 190 kPa bei einem Schalendicken Zuwachs von 10 auf 24 µm. Durch eine zweite Schale, in der Ersten, konnte der E-Modul auf im Mittel 520 kPa gesteigert werden.
Weiterführend, wurde von mir und Herrn Fery ein neues Konzept entwickelt, um eine mechanische, oberflächliche Verhärtung von Mikrogelpartikel durch Temperaturver¬änderung zu induzieren mit einem Augenmerk, dass sich die Adhäsionseigenschaften nicht verändern. Zunächst wurden von meinen Kooperationspartnern aus der Gruppe von Herrn Seiffert vernetzte Poly-N-isopropylacrylamid (PNIPAM) Partikel mittels Tropfenmikroflu¬idik hergestellt. In einem zweiten Mikrofluidik Experiment wurde diese Partikel mit einer wässrigen Lösung von Polyacrylamid (PAAM, unvernetzt) umgeben bevor es zu einer Tropfenbildung in der organischen Phase kommt. Nach kurzer Diffusionszeit der PAAM Polymerketten in die Kernpartikel, wurde die PAAM Schale mittels UV-Licht querver-netzt. In temperaturkontrollierten CP-AFM Untersuchungen habe ich die resultierenden Adhäsions- und mechanischen Eigenschaften auf der Einzelpartikel Ebene bestimmt. Hier¬bei konnte bei den Kern-Schale Partikeln der für bloße PNIPAM Partikel typische E-Modul anstieg oberhalb von 34°C nachgewiesen werden, jedoch mit verminderten Absolutwerten. Eine begleitende Veränderung der adhäsiven Eigenschaften der Kern-Schale Partikel konnte dabei nicht beobachtet werden.
Lag ein Fokus der vorherigen Arbeit auf konstanten Wechselwirkungen, behandelt der dritte Teil der Ergebnisse, einen neuen Synthese Ansatz zur Herstellung Muschel in¬spirierter Unterwasser Adhäsiva und deren Charakterisierung. Basierend auf einer natürli¬chen Peptidsequenz, wurde eine enzymatische Polymerisationsroute von meinen Koopera¬tionspartner aus der Börner Gruppe entwickelt. Der Reaktionsverlauf wurde durch neu de¬signte Modelreaktion untersucht und mittels Massenspektroskopie und GPC analysiert, das resultierende Polymer zusätzlich mit HPLC und SDS-page. Nanometer dicke Beschichtun¬gen dieser Muschel inspirierten Polymer wiesen eine sehr gute Beständigkeit gegen hoch konzentrierten Salzlösung in QCM-D Experimenten auf. Die Adhäsionsarbeit, welche nö¬tig ist um eine Mikropartikel von diesen in wässeriger Lösung zu entfernen, wurde von mir mittels CP-AFM bestimmt. Nach meiner Erweiterung einer bekannten Adhäsionstheorie, konnten für das synthetische Polymer höhere Werte als für vergleichbare Natürliche von bis zu 10.9 mJ m-2 bestimmt werden.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38580 |
Date | 28 February 2020 |
Creators | Seuß, Maximilian |
Contributors | Fery, Andreas, Voit, Brigitte, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds