Return to search

Analysis of the Impact of Reactive Power Control on Voltage Stability in Transmission Power Grids

Voltage stability is the ability of a power system to maintain acceptable voltages at all buses under normal and abnormal operating conditions. The scarcity of reactive power or reactive power imbalance is the main reason of voltage instabilities. The energy supply of Germany will be dominated by renewable energy sources (RES) within energy transition actions leading to a decrease in conventional power plants especially in the transmission grid. Since the conventional power plants are still main reactive power sources, key challenge in the future will be the provision of system services such as control of reactive power to maintain voltage stability in the transmission networks.

A wide range of technology that is able to provide the required dynamic reactive power compensation is already available. However, in order to find the most effective implementation, it is necessary to investigate and compare these different technologies for a voltage stable grid operation. The main challenge regarding comparative studies that incorporate reactive power compensation devices is the development and the implementation of reliable comparison strategies.

This thesis analyses the impact of reactive power on the voltage stability phenomena both in long-term and short-term time frames under various grid situations. Voltage
stability margins in the long-term time frame are quantified by gradually increasing the reactive power injection into certain buses until the voltage collapses. Voltage stability in the short-term time frame is assessed by applying grid faults and simulating the time-domain grid response. A transient voltage severity ratio (TVSR) is developed in this thesis as the main comparison metric to evaluate and compare the performance of investigated compensation devices. Additionally, TVSR and other developed comparison metrics in this thesis are used to determine the optimal settings of the controller parameters of compensation devices. As a result, the submitted thesis shows a practical and reliable approach to analyze the performance of different compensation devices under different grid situations.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:70977
Date16 June 2020
CreatorsCabadag, Rengin Idil
ContributorsSchegner, Peter, Möst, Dominik, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds