Return to search

Position signal filtering for hydraulic active heave compensation system

In the paper a new position signal filtering method with position prediction is presented along with test results using a simulation tool. The complete active heave compensation system performance with input signal filtering is also shown. The control system uses an input acceleration signal taken from the motion reference unit, which usually contains noise that is not acceptable for the position controller. Currently, a Kalman filter is used which is okay to use for certain conditions. The filter works similarly to how it is used for autonomous applications where two input positions are necessary, one from position sensors and another one taken from the model. The challenge is that there is no physical wave model available for the Kalman filter used for offshore position control and the waves are not predictable. It was found that a Kalman filter with a special signal prediction instead of the model input can be used. This position prediction helps to avoid system delays and the potential of missing the signal for a short period of the time.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71095
Date25 June 2020
CreatorsPomierski, Wojciech
ContributorsDresdner Verein zur Förderung der Fluidtechnik e. V. Dresden
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.25368/2020.6, urn:nbn:de:bsz:14-qucosa2-709160, qucosa:70916

Page generated in 0.0015 seconds