During the last years, important progress has been made in modeling early brain development using 3-dimensional in vitro systems, so-called cerebral organoids. These can be grown from pluripotent stem cells of different species such as our closest living relatives, the chimpanzees and from patients carrying disease mutations that affect brain development. This offers the possibility to study uniquely human features of brain development as well as to identify gene networks altered in neurological diseases. Profiling the transcriptional landscape of cells provides insights into how gene expression programs have changed during evolution and are affected by disease. Previously, studies of this kind were realized using bulk RNA-sequencing, essentially measuring ensemble signals of genes across potentially heterogeneous populations and thus obscured subtle changes with respect to transient cell states or cellular subtypes. However, remarkable advances during the last years have enabled researchers to profile the transcriptomes of single cells in high throughput.
This thesis demonstrates how single-cell transcriptomics can be used to dissect human-specific features of the developing and adult brain as well as cellular subpopulations dysregulated in a malformation of the cortex.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71686 |
Date | 10 August 2020 |
Creators | Kanton, Sabina |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English, German |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds