Return to search

Aurora B Kinase-Inhibitor und Therapie mit elektrischen Feldern als neues adjuvantes Therapiekonzept in der Behandlung maligner Gliome

Das Glioblastom ist der häufigste hirneigene Tumor des Erwachsenen und mit einer 5-Jahres-Überlebensrate von weniger als 5 % eine der aggressivsten Hirntumorerkrankungen (Batash et al., 2017). Verbunden mit einer schlechten Prognose und geringen Remissionsraten ergibt sich die Notwendigkeit, bestehende Therapieoptionen zu optimieren und zu erweitern. Im Rahmen dieser Arbeit wurde das vor einigen Jahren entwickelte und aktuell in klinischen Studien angewandte Konzept der Therapie von Malignomen mit elektrischen Wechselfeldern, den sog. Tumor Treating Fields (TTFields), aufgegriffen. Basis der anti-tumoralen Wirkung der im Rahmen von Glioblastom-Studien applizierten TTFields bildet eine Tumor-spezifische Frequenz von 200 kHz sowie geringe Intensitäten, die einen nebenwirkungsarmen anti-mitotischen Effekt erzielen (Kirson et al., 2004; Kirson et al., 2007; Clark et al., 2017; Porat et al., 2017). Dieser resultiert sowohl aus alternierenden elektrischen Feldern, die während der Metaphase über eine Irritation des Dipolmoments von Tubulin-Untereinheiten die Assemblierung des Spindelapparates inhibieren, als auch aus inhomogenen elektrischen Feldern, die während der Telophase die Trennung der Tochterzellen behindern. Mit dieser Behandlungsoption konnten schon einige gute Ergebnisse für die Behandlung von Glioblastomen in klinischen Studien erreicht werden (Stupp et al., 2017). Eine weitere anti-mitotische Therapieoption stellt die Inhibierung der Aurora B Kinase mittels AZD1152 dar. Die Aurora B Kinase ist Teil des Chromosomal Passenger Complex (CPC), der bei Inhibierung der Kinase seine Kontrollfunktionen während der Mitose und Zytokinese nicht wahrnehmen kann. Diese fehlende Kontrolle führt zu Polyploidie, die einen Zelltod verursachen kann (Wiedemuth et al., 2016). Aufgrund dieses ähnlichen biologischen Hintergrundes wurde zu Beginn dieser Arbeit die Hypothese aufgestellt, dass eine kombinierte Therapie mittels TTFields und AZD1152 einen additiven zytotoxischen Effekt im Vergleich zur Monotherapie mit TTFields erzielen kann. Es konnte zunächst für die etablierte Zelllinie U87-MG ein signifikanter additiver Effekt in der Kombinationstherapie der TTFields mit AZD1152 im Vergleich zur alleinigen Therapie mittels TTFields nachgewiesen werden. Die mediane Tumorzellzahl konnte hierbei in der Kombinationstherapie um 60 % reduziert werden. Dieser additive Effekt konnte ebenfalls an zwei Primärkulturen reproduziert werden. Hierbei konnte die relative mediane Tumorzellzahl der Primärkultur HT18584 ebenfalls um 60 % in der Kombinationstherapie gesenkt werden. Diese tetraploide Zellreihe zeigte außerdem einen außergewöhnlich großen zytotoxischen Effekt bei der Behandlung mit AZD1152. Signifikant zeigte ebenso die Primärkultur HT12347 einen medianen Verlust von 56 % der Tumorzellen nach einer kombinierten Behandlung. Qualitativ und zellmorphologisch konnte mittels konfokaler Laser-Scanning- sowie Lichtmikroskopie die Akkumulation von mitotischen Defekten detektiert werden, die auch in den Monotherapien aber vor allem in der Kombinationstherapie zu finden waren. Die in der quantitativen Analyse gezeigte additive Zytotoxizität der Kombinationstherapie konnte hier nochmals visualisiert und bestätigt werden. Für eine klinische Phase I-Studie zur Überprüfung der Effektivität sollten zunächst weitere zellkulturtechnische Daten erfasst werden, um die Universalität der kombinierten Behandlung zu überprüfen. Weiterhin wäre die Entwicklung einer selektiven/lokalen Therapie mittels AZD1152 wünschenswert, um die Nebenwirkungen des Medikamentes abzumildern. Es sollte außerdem das im Rahmen dieser Arbeit detektierte sensitivere Ansprechen der tetraploiden Zelllinie HT18584 genauer untersucht werden, um eine potentiell prognostisch günstige Verbindung zwischen der Behandlung mit AZD1152 und tetraploiden Zellen herstellen zu können.:1 EINLEITUNG 1
1.1 Glioblastoma multiforme – Definition, Inzidenz und Ätiologie 1
1.1.1 Symptomatik und Diagnostik des Glioblastoms 2
1.2 Molekulare Klassifizierung 3
1.2.1 Primäre und sekundäre Glioblastome und einige allgemeine Marker 3
1.2.2 Der MGMT-Status 5
1.3 Der eukaryotische Zellzyklus und sequentielle Kontrollpunkte 6
1.3.1 Der Chromosomal Passenger Complex (CPC) 8
1.3.2 Die Familie der Aurorakinasen 9
1.4 Therapie maligner Gliome 10
1.4.1 Standardtherapie eines Glioblastoms 10
1.4.2 Tumor Treating Fields (TTFields) – Biologischer Effekt und Studienlage 11
1.4.3 Aurora Kinase-Inhibitoren 14
1.5 Zielstellung der Arbeit 15
2 METHODEN UND MATERIALIEN 17
2.1 Methoden 17
2.1.1 Zellkultivierung allgemein 17
2.1.2 Passagieren adhärenter Zellen 17
2.1.3 Kultivierung von primärem Patientenmaterial 18
2.1.4 Kryokonservierung und Rekultivierung eukaryotischer Zelllinien 18
2.1.5 Bestimmung der Lebendzellzahl mittels Neubauer-Zählkammer 19
2.1.6 Durchflusszytometrische Analyse 19
2.1.7 Bestimmung der Lebendzellzahl mittels Propidiumiodid (PI) 20
2.1.8 Durchflusszytometrische Immunphänotypisierung von Glioblastomzellen 20
2.1.9 In vitro-Applikation der Tumor Treating Fields (TTFields) 21
2.1.10 Titration der effektiven Aurora B Kinase-Inhibitorkonzentrationen mittels PI 22
2.1.11 Titration inhibitorischer Temozolomidkonzen-trationen mittels AlamarBlue-Assay 23
2.1.12 Konfokale Laser-Scanning-Mikroskopie 23
2.2. Materialien 25
2.2.1 Geräte 25
2.2.2 Chemikalien und Reagenzien 25
2.2.3 Lösungen 26
2.2.4 Medien 27
2.2.5 Kommerzielle Kits 28
2.2.6 Antikörper 28
2.2.7 Software 28
2.2.8 Statistik 29
2.2.9 Zelllinien 29
3 ERGEBNISSE 30
3.1 Wahl des Designs der Kontrollgruppen 30
3.2 Typisierung der verwendeten Primärkulturen 32
3.2.1 Befunde der Pathologie des Universitätsklinikums Dresden 33
3.2.2 Immunphänotypisierung der Primärkultur HT18584 34
3.2.3 Immunphänotypisierung der Primärkultur HT12347 35
3.3 Titrationen mit AZD1152 36
3.3.1 Titration mit AZD1152 für die Primärkultur HT18584 36
3.3.2 Titration mit AZD1152 für die Primärkultur HT12347 37
3.4 Kombinationstherapie mittels AZD1152 und TTFields 38
3.4.1 Quantitativer Effekt der Kombinationstherapie an U87-MG 39
3.4.2 Quantitativer Effekt der Kombinationstherapie an HT18584 40
3.4.3 Quantitativer Effekt der Kombinationstherapie an HT12347 41
3.4.4 Qualitativer Effekt der Kombinationstherapien 42
3.4.4.1 Die Kombinationstherapie mit U87-MG 43
3.4.4.2 Die Kombinationstherapie mit HT18584 44
3.4.5 Zytotoxischer Effekt der Kombinationstherapie an HT12347 45
3.5 Titrationen mit Temozolomid 47
3.5.1 Therapie mit Temozolomid an U87-MG 48
3.5.2 Therapie mit Temozolomid an Primärkulturen 48
4 DISKUSSION 52
4.1 Vorversuche 52
4.1.1 Wachstumsanalyse der Kontrollgruppen 52
4.1.2 Charakterisierung der Primärkulturen 53
4.2 Die neuen Behandlungsoptionen 54
4.2.1 Applikation der TTFields 54
4.2.2 Die Behandlung mit AZD1152 55
4.2.3 Die Kombinationstherapie 57
4.3. Die Behandlung mit Temozolomid (TMZ) 59
5 ZUSAMMENFASSUNG 62
LITERATURVERZEICHNIS 64
TABELLENVERZEICHNIS 73
ABBILDUNGSVERZEICHNIS 74
ABKÜRZUNGSVERZEICHNIS 75
ANHANG 77
Anhang 1: Einverständniserklärung der Patienten 77
Anhang 2: Erlaubnis zur Nutzung der Patientendaten der Pathologie 78
Anhang 3: Erklärungen zur Eröffnung des Promotionsverfahrens 79
Anhang 4: Erklärung über die Einhaltung gesetzlicher Vorgaben 81

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:72377
Date07 October 2020
CreatorsBartmann, Paula
ContributorsKrex, Dietmar, Heese, Oliver, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds