Return to search

Hierarchical regulation of spindle size during early development

During embryogenesis, a single cell gives rise to a multi-cellular embryo through successive rounds of cell division. As cells become smaller, cellular organelles adapt their sizes accordingly. The size of the mitotic spindle—the microtubule-based structure controlling these divisions—is particularly important as it determines the distance over which chromosomes are segregated. To perform its function properly, spindle size scales with cell size. However, we still lack a mechanistic understanding of the underlying microtubule-based processes that regulate spindle scaling.
In this thesis, I combined quantitative microscopy and laser ablation in zebrafish embryos and Xenopus laevis egg extract encapsulated in oil droplets. My measurements revealed the influence of microtubule length dynamics, transport, and nucleation on cell size-dependent spindle scaling. Strikingly, I discovered a hierarchical regulation of spindle size. In large cells, microtubule nucleation exclusively scales spindle size relative to cell size by changing the number of microtubules within the spindle. In small cells, microtubule dynamics fine-tune spindle size by modulating microtubule length.
To understand the mechanism of spindle scaling, I proposed a theoretical model based on a limiting number of microtubule nucleators and microtubule-associated proteins that regulate microtubule length. The transition from nucleation- to dynamics-based scaling requires that microtubule number and the number of microtubule-associated proteins that promote microtubule growth scale differently with cell size. This can be achieved by sequestering an inhibitor of microtubule nucleation to the cell membrane, which is consistent with my measurements of microtubule nucleation. The differential regimes of spindle scaling modulated by microtubule nucleation and dynamics imply a gradual change in spindle architecture, which may ensure faithful chromosome segregation by spindles of all sizes.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:74036
Date24 February 2021
CreatorsRieckhoff, Elisa Maria
ContributorsJülicher, Frank, Grill, Stephan, Needleman, Daniel, Brugués, Jan, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds