Return to search

Quantenchemische Berechnungen an tetravalenten ƒ-Elementverbindungen

Diese Arbeit verfolgte das Ziel einer Vertiefung des Grundverständnisses der Chemie vierwertiger Actinide und deren Wechselwirkung mit biologischen Modellsystemen. Dies erfolgte mit Hilfe von modernen quantenchemischen Rechenmethoden anhand der Komplexserien [MCl((S)-PEBA)₃] und [MN₃((S)-PEBA)₃] sowie [M(Salen)₂] (M = Ce, Th, Pa, U, Np, Pu) mit den Komplexbildnern (S,S)-N,N’-Bis(1-phenylethyl)-benzamidinat, kurz (S)-PEBA, und der Schiffschen Base (N,N’)-Bis(salicyliden)-ethylendiamin, kurz Salen. Die Arbeit umfasst im Einzelnen die Analyse der chemischen Bindung zwischen Metall und Ligandatomen basierend auf der Dichtefunktionaltheorie (DFT) sowie die Berechnung angeregter Zustände zur Simulation von elektronischen Absorptionsspektren und der Vergleich mit vorhandenen experimentellen Daten. Actinide können durch Havarien in Kernkraftwerken oder in einem Unfallszenario in einem tiefengeologischen Endlager in die Umwelt gelangen und stellen durch ihre Chemo- und Radiotoxizität eine Gefahr für Mensch und Umwelt dar. Um die Einflüsse der Actiniden auf die Biosphäre einschätzen zu können, ist es daher wichtig die Wechselwirkung zwischen Actiniden und biologischen Systemen zu verstehen. Für einen systematischen Vergleich der Actiniden bzgl. ihrer Wechselwirkung mit Biomolekülen bietet sich eine möglichst lange Serie isostruktureller Verbindungen mit biorelevanten Modellsystemen an. Dies konnte für die Actiniden Th, Pa, U, Np und Pu jeweils im vierwertigen Oxidationszustand in Kombination mit den Liganden (S)-PEBA sowie Salen erreicht werden. Weiterhin wurde auch das Lanthanid Ce untersucht, um nicht nur die Elektronenstruktur entlang der Actinid-Serie zu untersuchen sondern auch 4f- mit 5f-Elementen vergleichen zu können.
Für die Untersuchung der Metall-Ligand-Wechselwirkung kam eine große Auswahl moderner Methoden zum Einsatz, welche verschiedene Aspekte der chemischen Bindung beleuchten. Dies umfasste qualitative Methoden, wie die Visualisierung von Elektronendichtedifferenzen und nicht-kovalenten Wechselwirkungen, sowie quantitative Methoden, wie die Quantentheorie der Atome in Molekülen (QTAIM), die Interacting Quantum Atoms (IQA) und die natürliche Populationsanalyse (NPA). Im Falle der PEBA-Serien wurde eine hauptsächlich ionische M−N-Bindung zwischen Metall und Ligand beobachtet, da sowohl experimentell als auch quantenchemisch bestimmte Bindungslängen im Wesentlichen den ionischen Radien der beteiligten Elemente folgten. Dennoch konnte ein kovalenter Anteil gezeigt werden, welcher durch die sterischen Wechselwirkungen zwischen den PEBA-Liganden überdeckt wird und damit experimentell nicht beobachtet wurde. Entlang der Serie zeigte Th die am stärksten ionische Bindung. Selbst der jeweilige Ce-Komplex wies eine kovalentere Bindung zu den Liganden auf. U, Np und Pu bildeten Bindungen mit dem höchsten kovalenten Anteil aus, welcher sich jedoch in der Beteiligung der d- und f-Orbitale unterschied. Die Besetzung der 6d-Orbitale war für U am höchsten, wohingegen der f-Überschuss (5f + 6f) von U zu Pu konstant blieb. Die Bindungen ausgehend von Pu besitzen also stärkeren „f-Charakter“.
In der Serie der [M(Salen)₂]-Komplexe konnte neben den Vergleichen der Metalle auch der Vergleich zwischen M−N- und M−O-Bindungen durchgeführt werden. Sämtliche eingesetzte Analyse-Methoden zeigten hierbei eine weitaus kovalentere Bindung der Metalle zu O als zu N. Dies zeigte sich anhand kürzerer M−O-Bindungen sowie einer starken Polarisierung des freien Elektronenpaars am O, was für die kovalente Bindung genutzt wird. Alle Bindungen in dieser Serie zeigten allerdings auch hier grundsätzlich einen überwiegend ionischen Bindungscharakter. Entlang der Serie konnte abermals Th als das Metall mit der ionischsten Bindung identifiziert werden. Darauf folgen Ce und Pu, welche durch ihre geringe Größe eine stark elektronenziehende Wirkung auf die Elektronendichte der Liganden besitzen, welche lokalisiert und damit für die chemische Bindung nicht mehr verfügbar sind. Pa, U und Np zeigten einen vergleichbar hohen kovalenten Charakter, wobei die jeweilige Lage des Maximums von der angelegten Methode abhängt.
Die Energien der angeregten Zustände von Pa⁴⁺ , U⁴⁺ und ihren jeweiligen oktaedrischen Cl- und F-Komplexen konnten mit Hilfe einer Methodenkombination basierend auf der Complete Active Space Self Consistent Field Methode (CASSCF) mit hoher Genauigkeit berechnet und gruppentheoretisch analysiert werden. Es zeigte sich ein starker Einfluss der chemischen Umgebung auf die Energien der angeregten Zustände. Ebenso sorgte die Spin-Bahn-Kopplung für eine sehr starke Mischung angeregter Terme (teilweise über 50 %). Diese Erkenntnisse wurden genutzt, um die elektronischen Absorptionsspektren von [An(Salen)₂] (An = Pa, U, Np, Pu) zu berechnen und eine Bandenzuordnung vorzunehmen. Hierbei wurde eine sehr gute Übereinstimmung mit experimentellen Spektren bereits für kleine Basissätze und aktive Räume beobachtet.
DMRG-Berechnungen konnten dabei helfen, die statische Korrelation in den Komplexen offenzulegen und erweiterte aktive Räume zu definieren, die neben den f-Orbitalen auch σ- und π-Orbitale der Stickstoffe beinhalten und ein hohes Potenzial zur Verbesserung der Übereinstimmung zwischen Theorie und Experiment besitzen. Diese Art der Analyse der Wellenfunktion erwies sich als wertvolles Werkzeug für hochgenaue Berechnungen elektronischer Parameter.
Die Ergebnisse der in dieser Arbeit durchgeführten chemischen Bindungsanalyse sowie die Berechnungen spektraler Parameter in Kombination mit experimentellen Befunden leisten einen großen Beitrag für das grundlegende Verständnis der elektronischen Struktur der Actinide. Mit diesen Daten können potenzielle Einflüsse der Actiniden auf die Biosphäre besser verstanden und vorhergesagt werden. Auf der anderen Seite wird auch aufgezeigt, dass die Actinidenchemie noch am Anfang einer äußerst interessanten Forschung steht. Laborexperimente können nur unter besonderen Sicherheitsvorkehrungen und damit nicht in jedem Labor durchgeführt werden. Gleichzeitig sind hochgenaue quantenchemische Berechnungen an Actiniden noch nicht routinemäßig möglich, erfahren aber stetig neue Entwicklungen. Durch den Vergleich der Berechnungen mit den Laborergebnissen konnte gezeigt werden, dass die verwendeten Methodenkombinationen, insbesondere die der Multireferenzberechnungen, hohes Potenzial für quantitative Berechnungen elektronischer, elektrischer und magnetischer Eigenschaften besitzen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:75015
Date03 June 2021
CreatorsKloditz, Roger
ContributorsStumpf, Thorsten, Patzschke, Michael, Heine, Thomas, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds