Return to search

Bioassoziation und Transport von ausgewählten Radionukliden und ihren Analoga durch Basidiomyzeten

Radionuklide werden in vielen Bereichen der Forschung, der Medizin, des Militärs und der Industrie eingesetzt. Aufgrund ihrer vielseitigen Anwendungen können Radionuklide durch anthropogene Einflüsse in die Umwelt gelangen. Durch Migration der radioaktiven Stoffe von oberflächennahen Bereichen durch tiefere Erdschichten bis hin zum Grundwasser können Radionuklide durch ihre chemotoxischen und radiotoxischen Eigenschaften ein Sicherheitsrisiko für das Ökosystem darstellen. Die im Boden allgegenwärtig vorkommenden, myzelbildenden Pilze können aufgrund ihrer schnellen und großflächigen Durchdringung des Erdreichs sowie ihrer hohen Lebenserwartung von mehreren hundert Jahren das Migrationsverhalten von Radionukliden im Erdboden beeinflussen.
In Pilzen wird aus diesem Grund ein hohes Potential für Strahlenschutzvorsorgemaßnahmen und biologischen Sanierungsmethoden gesehen. Daher wurden in dieser Arbeit die molekularen Wechselwirkungen von verschiedenen Pilzspezies der Abteilung der Basidiomyzeten mit U(VI) und Eu(III) untersucht.
Die aus der Promotionsarbeit resultierenden Erkenntnisse tragen zu einem besseren Verständnis der Wechselwirkungen der ausgewählten Pilze Schizophyllum commune, Pleurotus ostreatus, Lentinus tigrinus und Leucoagaricus naucinus mit Uran und Europium bei.
Es konnte festgestellt werden, dass die grundlegende chemische Komplexierung von U(VI) bei dem Bioassoziationsprozess in allen Pilzbiomassen bezüglich der direkten chemischen Umgebung gleich ist. Es werden in allen vier Pilzen vier Komplexe gebildet. Identifizierte Gruppen möglicher Liganden sind zum einen phosphorylierte Zellwandpolysaccharide oder -proteine sowie phosphorylierte Aminosäuren. Jedoch unterscheidet sich die zelluläre Lokalisation der bioassoziierten Metallen bei den Pilzen. Im Fall der Bioassoziation von Eu(III) werden ebenfalls Spezies mit ähnlicher chemischer Zusammensetzung gebildet, wobei es auch hier zu unterschiedlichen Lokalisationen in der Zelle kommt. Die Untersuchungen zeigen, dass trotz der ähnlichen chemischen Komplexierung der zugrundeliegende Bioassoziationsmechanismus von Pilz zu Pilz variiert.
Experimente unter naturnahen Bedingungen zeigten, dass dieselben oder zumindestens ähnliche Bioassoziationsmechanismen stattfinden wie unter Laborbedingungen, so dass davon ausgegangen werden kann, dass auch in der Natur ähnliche Bioassoziationsmechanismen stattfinden und die Laborergebnisse damit übertragbar sind.
In Experimenten mit Mikrokosmen konnte außerdem der Transport von bioakkumulierten Metallen innerhalb der Hyphe erstmalig demonstriert werden. Dadurch konnte gezeigt werden, dass die in die Zelle aufgenommenen Metalle prinzipiell über den gesamten Organismus verteilt werden kann.
Die vorliegende Promotionsarbeit zeigt somit, dass Pilze im Allgemeinen ein großes Potential für biologische Sanierungs- und vor allem für Strahlenschutzvorsorgemaßnahmen besitzen auf Grund der großen Mengen an assoziiertem U(VI) und teilweise Eu(III), der Bildung stabiler Komplexe mit phosphatischen Bioliganden und durch Bioakkumulation in das Zellinnere. Die unterschiedlichen biochemischen Wechselwirkungen der untersuchten Pilzarten, die mit der Radionuklidexposition verbunden sind, haben jedoch gezeigt, dass die untersuchten Pilzspezies unterschiedliche Bioassoziationsprozesse verwenden und dadurch unterschiedliche Effektivität bei der Immobilisierung besitzen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79087
Date09 May 2022
CreatorsWollenberg, Anne
ContributorsStumpf, Thorsten, Kothe, Erika, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf e.V.
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0039 seconds