Return to search

Environmental Fate of Fibrous Microplastics of Textile origin: – Insights into the Retention in a lab-scale Wastewater Treatment Plant and Biodegradation Evaluation

Mikroplastik (MPs) Partikel die kleiner als 5 mm sind, werden weltweit als neu identifizierte Gefahr auf die Umwelt betrachtet. Um geeignete Minderungsstrategien entwickeln zu können, werden diese neuartigen Umweltschadstoff hinsichtlich möglicher Eintragsquellen und potentieller Transportwege in der Umwelt zunehmend diskutiert. Gründe für eine notwendige Reduzierung von MPs in der Umwelt gibt es viele. Es werden dabei insbesondere das Transportverhalten in der Umwelt sowie deren Toxizität auf das System Mensch und Umwelt als Schlüsselkomponenten angesehen. Die in den letzten zehn Jahren gestiegene Nachfrage an synthetischen Textilien und der daraus resultierenden Produktionssteigerung hat zur Folge, dass diese Textilien eine Hauptquelle der MP-Verschmutzung im aquatischen System darstellen. Jedoch fehlen aktuell spezifische Informationen über die Größe und den Verbleib von faserigen Mikroplastikpartikeln (FMP), die aus gewaschenen Textilien des täglichen Lebens freigesetzt werden, wenn sie die Kläranlagen passieren und schließlich in Ökosysteme gelangen.
Ziel dieser Arbeit ist es, die prävalent vorkommenden Größenfraktionen aus Polyethylenterephthalat (PET) FMPs, die aus synthetischen Fleecejacken beim Waschen in einer kommerziellen Waschmaschine freigesetzt werden, zu identifizieren und anschließend zu quantifizieren. Dabei soll ihr Vorkommen und ihr Verbleib in konventionellen Kläranlagen unter Berücksichtigung verschiedener Behandlungsstufen untersucht werden. Um den potenziellen Einfluss der PET-Faserlänge auf das Transportverhalten in Kläranlagen zu untersuchen, wurden zwei unterschiedlichen Größenfraktionen (1500 – 500 µm und 150 – 50 µm) in Batchtests miteinander verglichen. Darüber hinaus wurde in dieser Studie die Wirksamkeit der Koagulation, einem etablierten Verfahren aus der chemischen Abwasserbehandlung, auf die Eliminierung von FMP-PET-Fasern aus Abwässern untersucht. Unter Verwendung eines aus einer städtischen Kläranlage stammenden Inokulums wurde die biologische Abbaubarkeit von FMPs (PET) im Labormaßstab im Vergleich zu natürlichen (Baumwolle), regenerierten (Viskose), PET/Baumwoll-Mischgewebe und oxo-abbaubaren PET-Fasern untersucht. Zusätzlich wurde der Einfluss verschiedener Ausrüstungsverfahren (z.B. Reaktivfarbstoffe, Weichmacher und antimikrobielle Zusätze) auf die biologische Abbaubarkeit von Viskosefasern getestet.
Der Waschtest ergab, dass die höchste Freisetzung von FMPs beim ersten Waschen auftrat und mit einer schrittweisen Reduzierung der Faseremission in weiteren Versuchen einherging. Bei einer Gesamtverteilung der PET-Faserlänge zwischen >1500 - 5 µm deckte die am häufigsten vorkommende massenbezogene Größenfraktion einen Bereich von 500 µm bis 50 µm ab. In einer Kläranlage konnte festgestellt werden, dass die Mehrheit der PET-Fasern unabhängig von der Größenverteilung mit partikulären Feststoffen abgeschieden werden (>90 % für Belebtschlamm und >99 % für Primärschlamm). Es konnte jedoch beobachtet werden, dass ein erhöhter Anteil kleiner Fasern (150 – 50 μm) in der flüssigen Phase verbleiben, was darauf hindeutet, dass kleineren Fasern nicht durch Kläranlagen zurückgehalten werden und schließlich in die Gewässer gelangen. Darüber hinaus konnte gezeigt werden, dass die Zugabe einer Koagulationschemikalie die Entfernung von großen PET Fasern (1500 – 500 μm) aus Abwässern geringfügig verbessern könnte; der Effekt war jedoch nicht signifikant. Die biologische Abbaubarkeit von Fasern in aquatischen Matrices nahm mit folgender Reihenfolge ab: Baumwolle ≥ Viskose > PET/Baumwollmischung > oxo-abbaubares PET ≥ PET. Dabei wiesen mit bestimmten Ausrüstungsmitteln behandelte Fasern im Vergleich zu unbehandelten Fasern einen niedrigeren Mineralisierungsgrad auf. Dieses zentrale Ergebnis unterstreicht die Bedeutung zur Berücksichtigung der Textilausrüstung bei der Bewertung des Umweltverhaltens von FMP.
Dies ist die erste Studie, in der sich in der Abwasserbehandlung ausschließlich auf das Verhalten von PET-Fasern als eins der am häufigsten verwendeten Materialien in der Bekleidungsindustrie konzentriert wurde. Es konnte gezeigt werden, dass das Verhalten von textilbasierten FMPs bei der Abwasserbehandlung größenabhängig sein kann. Darüber hinaus wurde beobachtet, dass die Textilveredelung, je nach Haltbarkeit und Art des verwendeten Additivs, die Halbwertszeit von Faserschuppen in der Umwelt verlängern kann. Beide Erkenntnisse sind von großer Bedeutung, um nachhaltige Textilprodukte mit einer deutlich geringeren FMP-Emission in die Umwelt und im Hinblick auf eine funktionierende Kreislaufwirtschaft zu entwerfen. / Microplastics (MPs), plastic particles <5 mm, have been considered as global emerging environmental contaminants, triggering discussions regarding their sources, transport pathways and possible mitigation strategies, while fate and toxicity are recognized as key issues, including their potential threats to human health. The increased production and use of synthetic clothes over the last decade have placed synthetic textiles as one of the main sources of MP pollution in aquatic environments. However, there is still lack of information specifically on the size and fate of Fibrous Microplastic Particles (FMPs) released from washed daily-life products when they pass through Wastewater Treatment Plants (WWTPs) and eventually end up in the ecosystems.
This thesis aims to investigate the amount and the dominant size fractions of polyethylene terephthalate (PET) FMPs released from synthetic fleece jackets during washing and to understand their occurrence and fate in conventional WWTPs, by considering different treatment stages. The potential influence of fibre length on the removal of PET fibres in WWTP was also investigated in batch tests, with two size fractions being compared, i.e. 1500 – 500 μm and 150 – 50 μm. Additionally, this study examined the efficacy of the coagulation, an established process of chemical treatment, on the elimination of FMP PET fibres from wastewaters. Finally, the present study evaluated the biodegradability of FMPs (PET) compared to natural (cotton), regenerated (viscose), PET/cotton blend and oxo-degradable PET fibres under laboratory conditions, by using inoculum from a WWTP, as well as the influence of different finishing processes (i.e. reactive dyes, softener and antimicrobial agent) on the biodegradability of viscose fibres.
The washing test revealed that the highest release of PET fibres occurred in the first wash, with a consequent reduction of fibres’ emissions in sequential trials. PET fibre sheds collected with the aid of a filter cascade ranged from >1500 – 5 μm, with the most dominant size fraction in terms of mass ranging from 500 μm to 50 μm. Microscopic and gravimetric analysis revealed that when present in a WWTP, the majority of PET fibres were found to be associated to solids (>90% for activated and >99% for primary sludge), irrespective of their size fraction. However, small fibres (150 – 50 μm) were demonstrated to be retained in the liquid phase to a higher extent, indicating the likelihood of smaller fibres to pass through the WWTPs, entering eventually the water bodies. Moreover, our results showed that the addition of the coagulant chemical could slightly enhance the removal of large PET fibres (1500 – 500 μm) from wastewater effluents; however the effect was not significant. The biodegradability of fibres in aquatic environments decreased with the following order: cotton ≥ viscose > PET/cotton blend > “oxo-degradable” PET ≥ PET, while fibres treated with certain finishing agents displayed a lower mineralization level compared to the untreated, highlighting the importance of considering the textile finish when assessing the environmental behavior of FMPs.
This is the first study giving emphasis solely on the behavior of PET fibres, one of the most common materials used in apparel industry, demonstrating that the performance of FMPs originated from textiles in wastewater treatments may be size-dependent. Moreover, it was shown that textile finishing might prolong the environmental half-lives of fibre sheds, depending on the durability and type of additive applied. Both findings are important when aiming at designing sustainable textile products with respect to a circular economy and considerably less FMPs emissions in the environment.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:81927
Date01 November 2022
CreatorsLykaki, Marianna
ContributorsStolte, Stefan, Krebs, Peter, Thöming, Jorg, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds