Return to search

Robotic Automation of Turning Machines in Fenceless Production: A Planning Toolset for Economic-based Selection Optimization between Collaborative and Classical Industrial Robots

Ursprünglich wurden Industrieroboter hauptsächlich hinter Schutzzäunen betrieben, um den Sicherheitsanforderungen gerecht zu werden. Mit der Flexibilisierung der Produktion wurden diese scharfen Trennbereiche zunehmend aufgeweicht und externe Sicherheitstechnik, wie Abstandssensoren, genutzt, um Industrieroboter schutzzaunlos zu betreiben. Ausgehend vom Gedanken dieser Koexistenz bzw. Kooperation wurde die Sicherheitssensorik in den Roboter integriert, um eine wirkliche Kollaboration zu ermöglichen. Diese sogenannten kollaborierenden Roboter, oder Cobots, eröffnen neue Applikationsfelder und füllen somit die bestehenden Automatisierungslücken. Doch welche Automatisierungsvariante ist aus wirtschaftlichen Gesichtspunkten die geeignetste? Bisherige Forschung untersucht zum Großteil isoliert eine der beiden Technologien, ohne
dabei einen Systemvergleich hinsichtlich technologischer Spezifika und Wirtschaftlichkeit anzustellen. Daher widmet sich diese Dissertation einer Methodik zum wirtschaftlichen Vergleich von kollaborierenden Robotern und Industrierobotern in schutzzaunlosen Maschinenbeladungssystemen. Besonderer Fokus liegt dabei auf dem Herausarbeiten der technischen Faktoren, die die Wirtschaftlichkeit maßgeblich beeinflussen, um ein Systemverständnis der wirtschaftlichen Struktur beider Robotertechnologievarianten zu erhalten. Zur Untersuchung werden die Inhalte eines solchen Planungsvorhabens beschrieben, kategorisiert, systematisiert und modularisiert. Auf wirtschaftlicher Seite wird ein geeignetes Optimierungsmodell vorgestellt, während auf technischer Seite vor allem die Machbarkeit hinsichtlich Greifbarkeit, Layoutplanung, Robotergeschwindigkeiten und Zykluszeitbestimmung untersucht wird. Mit deduktiven, simulativen, empirischen und statistischen Methoden wird das Systemverhalten für die einzelnen Planungsinhalte analysiert, um die Gesamtwirtschaftlichkeit mit einem Minimum an Investment,- Produktions,- und Zykluszeitinformationen a priori vorhersagen zu können. Es wird gezeigt, dass durch einen Reverse Engineering Ansatz die notwendigen Planungsdaten, im Sinne von Layoutkomposition, Robotergeschwindigkeiten und Taktzeiten, mithilfe von Frontloading zu Planungsbeginn zur Verfügung gestellt werden können. Dabei dient der Kapitalwert als wirtschaftliche Bewertungsgrundlage, dessen Abhängigkeit vom Mensch-Roboter-Interaktionsgrad in einem Vorteilhaftigkeitsdiagramm für die einzelnen Technologiealternativen dargestellt werden kann. Wirtschaftlich fundierte Entscheidungen können somit auf quantitiativer Basis getroffen werden.:1. Introduction 25
1.1 Research Domain 25
1.2 Research Niche 26
1.3 Research Structure 28
2. State of the Art and Research 31
2.1 Turning Machines and Machine Tending 31
2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31
2.1.2 Workpiece System 34
2.1.3 Machine System 36
2.1.4 Logistics System 39
2.1.5 Handling System 41
2.2 Robotics 43
2.2.1 Robot Installation Development and Application Fields 43
2.2.2 Fenceless Industrial and Collaborative Robots 48
2.2.3 Robot Grippers 55
2.3 Planning and Evaluation Methods 56
2.3.1 Planning of General and Manual Workstations 56
2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59
2.3.3 Robot Safety Planning 61
2.3.4 Economic Evaluation Methods 70
2.4 Synthesis - State of the Art and Research 71
3. Solution Approach 77
3.1 Need for Research and General Solution Approach 77
3.2 Use Case Delineation and Planning Focus 80
3.3 Economic Module – Solution Approach 86
3.4 Gripper Feasibility Module – Solution Approach 89
3.5 Rough Layout Discretization Model – Solution Approach 94
3.6 Cycle Time Estimation Module – Solution Approach 97
3.7 Collaborative Speed Estimation Module – Solution Approach 103
3.7.1 General Approach 103
3.7.2 Case 1: Quasi-static Contact with Hand 107
3.7.3 Case 2: Transient Contact with Hand 109
3.7.4 Case 3: Transient Contact with Shoulder 111
3.8 Synthesis – Solution Approach 114
4. Module Development 117
4.1 Economic Module – Module Development 117
4.1.1 General Approach 117
4.1.2 Calculation Scheme for Manual Operation 117
4.1.3 Calculation Scheme for Collaborative Robots 118
4.1.4 Calculation Scheme for Industrial Robots 120
4.2 Gripper Feasibility Module – Module Development 121
4.3 Rough Layout Discretization Module – Module Development 122
4.3.1 General Approach 122
4.3.2 Two-Dimensional Layout Pattern 123
4.3.3 Three-Dimensional Layout Pattern 125
4.4 Cycle Time Estimation Module – Module Development 126
4.4.1 General Approach 126
4.4.2 Reachability Study 127
4.4.3 Simulation Results 128
4.5 Collaborative Speed Estimation Module – Module Development 135
4.5.1 General Approach 135
4.5.2 Case 1: Quasi-static Contact with Hand 135
4.5.3 Case 2: Transient Contact with Hand 143
4.5.4 Case 3: Transient Contact with Shoulder 145
4.6 Synthesis – Module Development 149
5. Practical Verification 155
5.1 Use Case Overview 155
5.2 Gripper Feasibility 155
5.3 Layout Discretization 156
5.4 Collaborative Speed Estimation 157
5.5 Cycle Time Estimation 158
5.6 Economic Evaluation 160
5.7 Synthesis – Practical Verification 161
6. Results and Conclusions 165
6.1 Scientific Findings and Results 165
6.2 Critical Appraisal and Outlook 173 / Initially, industrial robots were mainly operated behind safety fences to account for the safety requirements. With production flexibilization, these sharp separation areas have been increasingly softened by utilizing external safety devices, such as distance sensors, to operate industrial robots fenceless. Based on this idea of coexistence or cooperation, safety technology has been integrated into the robot to enable true collaboration. These collaborative robots, or cobots, open up new application fields and fill the existing automation gap. But which automation variant is most suitable from an economic perspective? Present research dealt primarily isolated with one technology without comparing these systems regarding technological and economic specifics. Therefore, this doctoral thesis pursues a methodology to economically compare collaborative and industrial
robots in fenceless machine tending systems. A particular focus lies on distilling the technical factors that mainly influence the profitability to receive a system understanding of the economic structure of both robot technology variants. For examination, the contents of such a planning scheme are described, categorized, systematized, and modularized. A suitable optimization model is presented on the economic side, while the feasibility regarding gripping, layout planning, robot velocities, and cycle time determination is assessed on the technical side. With deductive, simulative, empirical, and statistical methods, the system behavior of the single planning entities is analyzed to predict the overall profitability a priori with a minimum of investment,- production,- and cycle time information. It is demonstrated that the necessary planning data, in terms of layout composition, robot velocities, and cycle times, can be frontloaded to the project’s beginning with a reverse engineering approach. The net present value serves as the target figure, whose dependency on the human-robot interaction grade can be illustrated in an advantageousness diagram for the individual technical alternatives. Consequently, sound economic decisions can be made on a quantitative basis.:1. Introduction 25
1.1 Research Domain 25
1.2 Research Niche 26
1.3 Research Structure 28
2. State of the Art and Research 31
2.1 Turning Machines and Machine Tending 31
2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31
2.1.2 Workpiece System 34
2.1.3 Machine System 36
2.1.4 Logistics System 39
2.1.5 Handling System 41
2.2 Robotics 43
2.2.1 Robot Installation Development and Application Fields 43
2.2.2 Fenceless Industrial and Collaborative Robots 48
2.2.3 Robot Grippers 55
2.3 Planning and Evaluation Methods 56
2.3.1 Planning of General and Manual Workstations 56
2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59
2.3.3 Robot Safety Planning 61
2.3.4 Economic Evaluation Methods 70
2.4 Synthesis - State of the Art and Research 71
3. Solution Approach 77
3.1 Need for Research and General Solution Approach 77
3.2 Use Case Delineation and Planning Focus 80
3.3 Economic Module – Solution Approach 86
3.4 Gripper Feasibility Module – Solution Approach 89
3.5 Rough Layout Discretization Model – Solution Approach 94
3.6 Cycle Time Estimation Module – Solution Approach 97
3.7 Collaborative Speed Estimation Module – Solution Approach 103
3.7.1 General Approach 103
3.7.2 Case 1: Quasi-static Contact with Hand 107
3.7.3 Case 2: Transient Contact with Hand 109
3.7.4 Case 3: Transient Contact with Shoulder 111
3.8 Synthesis – Solution Approach 114
4. Module Development 117
4.1 Economic Module – Module Development 117
4.1.1 General Approach 117
4.1.2 Calculation Scheme for Manual Operation 117
4.1.3 Calculation Scheme for Collaborative Robots 118
4.1.4 Calculation Scheme for Industrial Robots 120
4.2 Gripper Feasibility Module – Module Development 121
4.3 Rough Layout Discretization Module – Module Development 122
4.3.1 General Approach 122
4.3.2 Two-Dimensional Layout Pattern 123
4.3.3 Three-Dimensional Layout Pattern 125
4.4 Cycle Time Estimation Module – Module Development 126
4.4.1 General Approach 126
4.4.2 Reachability Study 127
4.4.3 Simulation Results 128
4.5 Collaborative Speed Estimation Module – Module Development 135
4.5.1 General Approach 135
4.5.2 Case 1: Quasi-static Contact with Hand 135
4.5.3 Case 2: Transient Contact with Hand 143
4.5.4 Case 3: Transient Contact with Shoulder 145
4.6 Synthesis – Module Development 149
5. Practical Verification 155
5.1 Use Case Overview 155
5.2 Gripper Feasibility 155
5.3 Layout Discretization 156
5.4 Collaborative Speed Estimation 157
5.5 Cycle Time Estimation 158
5.6 Economic Evaluation 160
5.7 Synthesis – Practical Verification 161
6. Results and Conclusions 165
6.1 Scientific Findings and Results 165
6.2 Critical Appraisal and Outlook 173

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:81929
Date09 November 2022
CreatorsSchneider, Christopher
ContributorsPutz, Matthias, Dix, Martin, Götze, Uwe, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds