Return to search

A volume‑averaged plasma model for heaterless C12A7 electride hollow cathodes

A volume-averaged hollow cathode plasma model is presented that serves as a preliminary design tool for orificed hollow cathodes. The plasma discharge volume is subdivided into two computational domains with separate sub-models that are used to determine the emitter and orifice region plasma parameters. The plasma model is coupled with a lumped node thermal model that uses power inputs from the plasma model to estimate the temperature distribution of the hollow cathode. The model has been implemented for conventional cylindrical emitter geometries and for novel disc-shaped emitters. A lanthanum hexaboride (LaB6) hollow cathode has been used to validate the cylindrical model results and shows good agreement with well-known trends of hollow cathodes and published model data, while a calcium aluminate electride (C12A7:e-) hollow cathode developed at Technische Universität Dresden (TUD) served as the basis for the disc configuration. The model results of the disc configuration are presented and discussed to identify trends and optimization potential for hollow cathodes using C12A7:e- emitters. The model results in combination with thermal measurements of the TUD hollow cathode indicate a work function of C12A7:e- in a hollow cathode plasma below 2 eV.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90566
Date04 April 2024
CreatorsGondol, Norman, Tajmar, Martin
PublisherSpringer
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1868-2510, 10.1007/s12567-022-00449-w, info:eu-repo/grantAgreement/European Commission/H2020 | RIA/828902//Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit/E.T.PACK

Page generated in 0.0021 seconds