The paper gives an overview over local inequalities for anisotropic simplicial Lagrangian finite elements. The main original contributions are the estimates for higher derivatives of the interpolation error, the formulation of the assumptions on admissible anisotropic finite elements in terms of geometrical conditions in the three-dimensional case, and an anisotropic variant of the inverse inequality. An application of anisotropic meshes in the context of a stabilized Galerkin method for a convection-diffusion problem is given.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199800625 |
Date | 30 October 1998 |
Creators | Apel, Thomas, Lube, Gert |
Contributors | TU Chemnitz, SFB 393 |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | application/pdf, application/postscript, text/plain, application/zip |
Page generated in 0.0196 seconds