Return to search

Local inequalities for anisotropic finite elements and their application to convection-diffusion problems

The paper gives an overview over local inequalities for anisotropic simplicial Lagrangian finite elements. The main original contributions are the estimates for higher derivatives of the interpolation error, the formulation of the assumptions on admissible anisotropic finite elements in terms of geometrical conditions in the three-dimensional case, and an anisotropic variant of the inverse inequality. An application of anisotropic meshes in the context of a stabilized Galerkin method for a convection-diffusion problem is given.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199800625
Date30 October 1998
CreatorsApel, Thomas, Lube, Gert
ContributorsTU Chemnitz, SFB 393
PublisherUniversit├Ątsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, application/postscript, text/plain, application/zip

Page generated in 0.0196 seconds