Return to search

Deep Inference and Symmetry in Classical Proofs

In this thesis we see deductive systems for classical propositional and predicate logic which use deep inference, i.e. inference rules apply arbitrarily deep inside formulas, and a certain symmetry, which provides an involution on derivations. Like sequent systems, they have a cut rule which is admissible. Unlike sequent systems, they enjoy various new interesting properties. Not only the identity axiom, but also cut, weakening and even contraction are reducible to atomic form. This leads to inference rules that are local, meaning that the effort of applying them is bounded, and finitary, meaning that, given a conclusion, there is only a finite number of premises to choose from. The systems also enjoy new normal forms for derivations and, in the propositional case, a cut elimination procedure that is drastically simpler than the ones for sequent systems.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1064911987703-38192
Date25 August 2003
CreatorsBrünnler, Kai
ContributorsTechnische Universität Dresden, Informatik, Prof. Dr. rer. nat. habil. Steffen Hölldobler, Prof. Dr. rer. nat. habil. Horst Reichel, Prof. Dr. rer. nat. habil. Steffen Hölldobler, Prof. Dr. Dale Miller
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0064 seconds