Return to search

Synthesis and characterisation of molecular nanostructures / Synthese und Charakterisierung von molekularen Nanostrukturen

In this thesis, bulk and local scale spectroscopic and microscopic tools have been applied to investigate the purified raw material of SWCNT and synthesized MWBNNT, BN-nanocapsules, B-doped SWCNT and SiC nanostructures. Using bulk scale sensitive techniques, including optical absorption spectroscopy, Raman spectroscopy, high-resolution electron energy-loss spectroscopy, the average response of the whole sample is obtained. On the other hand, on a local scale transmission and scanning electron microscopy as well as TEM-electron energy-loss spectroscopy provide information on single tubes or other nanostructures. First, diverse chemical and oxidation methods for the purification of as-produced SWCNT were presented. Purified samples were investigated using TEM and OAS. The analysis of the optical absorption spectra in the UV-Vis energy range revealed that some of the chemical treatments are harmful to nanotubes. In contrast to the chemical treatments an oxygen burning procedure was used on the raw material in high vacuum and a temperature range 450?650oC. The purification processes of SWCNT by HNO3 and oxygen burning procedures resulted in SWCNT comprised of selected diameters and a reduced diameter distribution. Both HNO3 and oxygen burning treatments can be used to selectively remove SWCNT with smaller diameters from the samples. In addition, an adapted substitution reaction was used for the synthesis of multiwall boron nitride nanotubes. It was shown that the IR-response of MWBNNT can be used as a fingerprint to analyse MWBNNT. As in h-BN for the analysis one has to be aware of the sample texture and the LO-TO splitting of the IR-active modes. TEM images and B1s and N 1s excitation edges of the grown material reveal the presence of multiwall BN nanotubes with an inner diameter of 3.1 nm and with a larger interplanar distance than in h-BN. The electronic properties of the multiwall BN nanotubes as derived from the q-dependent dielectric function e(w,q) are dominated by the band structure of the hexagonal-like BN sheets, as revealed by the large degree of momentum dispersion observed for the p and s+p plasmons, in agreement with that previously reported for different graphitic allotropic forms. Moreover, a fast and highly efficient synthesis route to produce BN nanocapsules with a narrow size distribution was developed. This was achieved by an adapted substitution process using SWCNT as templates followed by a rapid cooling treatment. The IR responses reveal the strong dipole active fingerprint lines of h-BN with distinct differences, which are due to texturing effects and which highlight the BN nanocapsules potential application as a reference source when deriving the sp2 to sp3 ratio in BN species due to their random orientation Furthermore, the idea of substitution was used for the systematic studies of B-doped SWCNT. The experiments carried out have resulted in 1, 5, 10, and 15 % boron incorporated into the single wall carbon nanotubes. Core level excitation spectroscopy of the B1s and C1s edges revealed that the boron atoms substitute carbon atoms in the tube lattice keeping an sp2-like bond with their nearest C neighbour atoms. Our results show that a simple rigid band model as has been applied previously to intercalated SWCNT is not sufficient to explain the changes in the electronic properties of highly doped B-SWCNT and a new type of a highly defective BC3 SWNT with new electronic properties is obtained. Finally, different silicon carbide nanostructures were produced. The spectroscopic and microscopic data led to a good understanding of the formation process. NH3 acts as a source of hydrogen that plays a key role in the formation of the structures through its ability to decompose SiC at high temperature such that along with the stacking faults that arise from the many polytypes of SiC the produced SiC nanorods become porous then hollow and eventually are completely decomposed.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1092389977453-71487
Date16 July 2004
CreatorsBorowiak-Palen, Ewa
ContributorsTechnische Universität Dresden, Mathematik und Naturwissenschaften, Chemie, Institut für Physikalische Chemie und Elektrochemie, Prof. G. Seifert, Dr. habil. M. Knupfer, Prof. R. J. Kalenczuk, Prof. G. Seifert
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0024 seconds