Return to search

Simulation von Lötprozessen beim Metall-Keramik-Löten

Das stoffschlüssige Fügeverfahren Löten ermöglicht vakuumdichte und hochtemperaturbeständige Verbindungen mit hoher Festigkeit. Es zeichnet sich insbesondere durch seine gute Eignung für die Fertigung von Massenteilen bzw. von Teilen mit vielen schwer zugänglichen Fügestellen aus.
Grundvoraussetzung für die gezielte Optimierung des Lötprozesses ist das Verständnis der dabei ablaufenden physikalischen und chemischen Prozesse sowie des Einflusses der Lötparameter auf die Eigenschaften der Lötverbindung. Die Dissertation soll einen Beitrag zum Verständnis der beim Löten von Keramiken auftretenden physikalischen und chemischen Prozesse und der Wirkung der Prozessparameter liefern, um eine gezielte Optimierung des Lötprozesses zu ermöglichen. Dabei kommen erstmals in der Löttechnik durchgängig numerische Simulationsverfahren zum Einsatz.
Die Schwerpunkte der Arbeit sind numerische Modelle und Simulationsstudien - sowie deren experimentelle Verifikation ? zur Benetzungskinetik des Lotes auf der Keramikoberfläche und der Spaltfüllung, den diffusionsgesteuerten Reaktionsmechanismen, die zur Umwandlung der Keramikoberfläche führen und den Spannungen in den Lötverbindungen.
Mit Hilfe der verwendeten Simulationsmodelle für Benetzungsvorgänge lassen sich das Benetzungs - und das Spaltfüllvermögen von Loten auf metallisierter Keramik vorhersagen. Die numerischen Untersuchungen werden durch die Ergebnisse von Benetzungs- und Lötversuchen gestützt.
Die Dicke der Reaktionszone besitzt einen entscheidenden Einfluß auf die Festigkeit der Lötverbindung. Zur Simulation des Reaktionszonenwachstums wird bisher ein Ansatz ohne Berücksichtigung des Temperaturzyklus verwendet. Dieser Ansatz ist für Lötprozesse wenig brauchbar, da insbesondere beim Keramiklöten langsames Aufheizen und Abkühlen erfolgt und die Haltezeit im Vergleich dazu gering ist.
Aufheizen und Abkühlen oberhalb der Schmelztemperatur des Lotes tragen jedoch auch zum Reaktionszonenwachstum bei. Für definierte Aufheiz- und Abkühlraten ist dieser Anteil konstant und kann berechnet werden.
Die entsprechende Gleichung gilt jedoch nur für eine konstante Löttemperatur, da der Wachstumskoeffizient exponentiell von der Temperatur abhängig ist und somit sensibel auf Temperaturschwankungen reagiert. Diese lassen sich jedoch beim Löten nicht vermeiden, so daß insbesondere bei kurzen Haltezeiten der exakte Temperaturzyklus berücksichtigt werden sollte. Damit wird es möglich, die Reaktionszonendicken beliebiger Temperaturzyklen vorherzusagen.
Desweiteren kann mit dem Modell für Diffusionsprozesse in-situ in die Steuerung des Lötprozesses eingegriffen werden, falls Ist- und Sollkurve stark voneinander abweichen. Dabei läßt sich in Echtzeit ein äquivalenter Lötzyklus berechnen, der die gleichen Diffusionsprozesse bewirkt, wie der ursprünglich vorgesehene. Das Modell kann somit dazu beitragen, Ausschuß zu vermeiden.
Neben der Berechnung der Dicke der Reaktionszonen in Metall-Keramik-Verbindungen ist es auch möglich, mittels thermodynamischer Berechnungen auf die darin enthaltenen Reaktionsprodukte zu schließen. Die vorausberechneten binären Phasen können auch experimentell nachgewiesen werden.
Weiterhin lassen sich auch komplexe Phasen analysieren, die gegenwärtig numerisch noch nicht vorhergesagt werden können. Eine Vorhersage der Bildung dieser Phasen ist erst möglich, wenn die entsprechenden Reaktionsgleichungen aufgestellt werden können und die für die Berechnung der Änderung der freien Enthalpien der Reaktionen erforderlichen thermodynamischen Größen bestimmt wurden.
Im Gegensatz zu schweißtechnischen Aufgabenstellungen wird bisher in der Löttechnik bei numerischen Simulationen der Spannungen in der Lötverbindung der Einfluß von Temperaturgradienten im Bauteil nicht berücksichtigt. Aus den Temperaturgradienten resultieren im Bauteil unterschiedliche thermische Dehnungen. Aufgrund dieser Dehnungsunterschiede entstehen Spannungen im Bauteil, die sich den durch die Differenz der Ausdehnungskoeffizienten der beteiligten Materialien verursachten thermischen Eigenspannungen überlagern. Überschreiten die resultierenden Spannungen die ertragbaren Spannungen eines Materials, kommt es zum Versagen des Bauteils.
FEM-Simulationen gestatten die Berechnung der während des Lötzyklus im Lötverbund resultierenden Spannungen unter Berücksichtigung von Temperaturgradienten. Damit ist es möglich, den Einfluß unterschiedlicher Abkühlraten auf die Bauteilspannungen zu untersuchen, um zum einen möglichst kurze Durchlaufzeiten zu erreichen und zum anderen die ertragbaren Spannungen des Bauteils während des Lötprozesses sowie des späteren Einsatzes nicht zu überschreiten.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200100991
Date26 November 2001
CreatorsSchüler, Heiko
ContributorsTU Chemnitz, Fakultät für Maschinenbau und Verfahrenstechnik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip
Relationdcterms:isPartOf:Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen ; 008

Page generated in 0.0028 seconds