Krümmungsabschätzungen für stabile Extremalen parametrischer Funktionale / Curvature estimates for stable extremals of parametric functionals

We consider immersed hypersurfaces in euclidean $R^{n+1}$ which are stable with respect to an elliptic parametric functional with integrand $F=F(N)$ depending on normal directions only. We prove an integral curvature estimate provided that $F$ is sufficiently close to the area integrand, extending the classical curvature estimate of Schoen, Simon and Yau for stable minimal hypersurfaces in $R^{n+1}$. As a crucial point of our analysis we derive a generalized Simons inequality for the laplacian of the length of a weighted second fundamental form with respect to an abstract metric associated with $F$. Using Moser's iteration technique we finally prove a pointwise curvature estimate for $n leq 5$. As an application we obtain a new Bernstein result for complete stable hypersurfaces of dimension $n leq 5$.

Identiferoai:union.ndltd.org:DUETT/oai:DUETT:duett-03192004-115454
Date22 March 2004
CreatorsWinklmann, Sven
ContributorsProf. Dr. Dr. h.c. mult. S. Hildebrandt, Prof. Dr. U. Dierkes
PublisherGerhard-Mercator-Universitaet Duisburg
Source SetsDissertations and other Documents of the Gerhard-Mercator-University Duisburg
LanguageGerman
Detected LanguageEnglish
Typetext
Formatapplication/octet-stream, text/html, application/pdf
Sourcehttp://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-03192004-115454/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. Hiermit erteile ich der Universitaet Duisburg das nicht-ausschliessliche Recht unter den unten angegebenen Bedingungen, meine Dissertation, Staatsexamens- oder Diplomarbeit, meinen Forschungs- oder Projektbericht zu veroeffentlichen und zu archivieren. Ich behalte das Urheberrecht und das Recht das Dokument zu veroeffentlichen und in anderen Arbeiten weiterzuverwenden.

Page generated in 0.002 seconds