Return to search

Genome instability induced by triplex forming mirror repeats in S.cerevisiae

The main goal of this research is to understand molecular mechanisms of GAA/TTC-associated genetic instability in a model eukaryotic organism, S. cerevisiae. We demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin and to block replication fork progression. MutSbeta complex and endonuclease activity of MutLalpha play an important role in facilitation of fragility. In addition to GAA/TTC triplex forming repeats, non-GAA polypurine polypyrimidine mirror repeats that are prone to the formation of similar structures were found to be hotspots for rearrangements in humans and other model organisms. These include H-DNA forming sequences located in the major breakpoint cluster region at BCL2, intron 21 of PKD1, and promoter region of C-MYC. Lastly, we have investigated the effect of the triplex-binding small molecules, azacyanines, on GAA-mediated fragility using the chromosomal arm loss assay. We have found that in vivo, azacyanines stimulate (GAA/TTC)-mediated arm loss in a dose dependent manner in actively dividing cells. Azacyanines treatment enhances the GAA-induced replication arrest. We discovered that also, azacyanines at concentrations that induce fragility also inhibit cell growth. Over 60% of yeast cells are arrested at G2/M stage of the cell cycle. This implies an activation of DNA-damage checkpoint response.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/33874
Date07 April 2009
CreatorsKim, Hyun-Min
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0059 seconds