Robust target localization and segmentation using statistical methods

This thesis aims to contribute to the area of visual tracking, which is the process of identifying an object of interest through a sequence of successive images. The thesis explores kernel-based statistical methods, which map the data to a higher dimensional space. A pre-image framework is provided to find the mapping from the embedding space to the input space for several manifold learning and dimensional learning algorithms. Two algorithms are developed for visual tracking that are robust to noise and occlusions. In the first algorithm, a kernel PCA-based eigenspace representation is used. The de-noising and clustering capabilities of the kernel PCA procedure lead to a robust algorithm. This framework is extended to incorporate the background information in an energy based formulation, which is minimized using graph cut and to track multiple objects using a single learned model. In the second method, a robust density comparison framework is developed that is applied to visual tracking, where an object is tracked by minimizing the distance between a model distribution and given candidate distributions. The superior performance of kernel-based algorithms comes at a price of increased storage and computational requirements. A novel method is developed that takes advantage of the universal approximation capabilities of generalized radial basis function neural networks to reduce the computational and storage requirements for kernel-based methods.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/33882
Date05 April 2010
CreatorsArif, Omar
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0019 seconds