The heavy-tailed traffic from wireless users, caused by the emerging Internet and multimedia applications, induces extremely dynamic and variable network environment, which can fundamentally change the way in which wireless networks are conceived, designed, and operated. This thesis is concerned with modeling, analysis, and optimization of wireless networks in the presence of heavy tails. First, a novel traffic model is proposed, which captures the inherent relationship between the traffic dynamics and the joint effects of the mobility variability of network users and the spatial correlation in their observed
physical phenomenon. Next, the asymptotic delay distribution of wireless users is analyzed under different traffic patterns and spectrum conditions, which reveals the
critical conditions under which wireless users can experience heavy-tailed delay with significantly degraded QoS performance. Based on the delay analysis, the fundamental impact of heavy-tailed environment on network stability is studied. Specifically, a new network stability criterion, namely moment stability, is introduced to better characterize the QoS performance in the heavy-tailed environment. Accordingly, a throughput-optimal scheduling algorithm is proposed to maximize network throughput while guaranteeing moment stability. Furthermore, the impact of heavy-tailed spectrum on network connectivity is investigated. Towards this, the necessary conditions on the existence of delay-bounded connectivity are derived. To enhance network connectivity, the mobility-assisted data forwarding scheme is exploited, whose important design parameters, such as critical mobility radius, are derived. Moreover, the latency in wireless mobile networks is analyzed, which exhibits asymptotic linearity in the initial distance between mobile users.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50232 |
Date | 13 January 2014 |
Creators | Wang, Pu |
Contributors | Akyildiz, Ian F. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0196 seconds