Return to search

Single-shot measurements of complex pulses using frequency-resolved optical gating

Frequency-resolved optical gating (FROG) is the standard for measuring femtosecond laser pulses. It measures relatively simple pulses on a single-shot and complex pulses using multi-shot scanning and averaging. However, experience from intensity autocorrelation suggests that multi-shot measurements may suffer from a coherent artifact caused by instability in the laser source. In this thesis, the coherent artifacts present in modern pulse measurement techniques are examined and single-shot techniques for measuring complex pulse(s) are proposed and demonstrated. The study of the coherent artifact in this work shows that modern pulse measurement techniques also suffer from coherent artifacts and therefore single-shot measurements should be performed when possible. Here, two single-shot experimental setups are developed for different scenarios. First, an extension of FROG is developed to measure two unknown pulses simultaneously on a single-shot. This setup can measure pulses that have very different center wavelengths, spectral bandwidths, and complexities. Second, pulse-front tilt is incorporated to extend the temporal range of single-shot FROG to tens of picoseconds which traditionally can only be attained by multi-shot scanning. Finally, the pulse-front tilt setup is modified to perform a single-shot measurement of supercontinuum, one of the most difficult pulses to measure due to its long temporal range, broad spectral bandwidth, and low pulse energy.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50335
Date13 January 2014
CreatorsWong, Tsz Chun
ContributorsTrebino, Rick
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0021 seconds