Return to search

Patient-specific finite element modeling of biomechanical interaction in transcatheter aortic valve implantation

Transcatheter aortic valve implantation (TAVI) is an effective alternative treatment option for patients with severe aortic stenosis, who are at a high risk for conventional surgical aortic valve replacement or considered inoperable. Despite the short- and mid-term survival benefits of TAVI, adverse clinical events, such as paravalvular leak, aortic rupture, and coronary occlusion, have been reported extensively. Many of these adverse events can be explained from the biomechanics perspective. Therefore, an in-depth understanding of biomechanical interaction between the device and native tissue is critical to the success of TAVI. The objective of this thesis was to investigate the biomechanics involved in the TAVI procedure using patient-specific finite element (FE) simulations. Patient-specific FE models of the aortic roots were reconstructed using pre-procedural multi-slice computed tomography images. The models incorporated aged human aortic material properties with material failure criteria obtained from mechanical tests, and realistic stent expansion methods. TAV deployment and tissue-device interaction were simulated; and the simulation results were compared to the clinical observations. Additionally, parametric studies were conducted to examine the influence of the model input on TAVI simulation results and subsequently the potential clinical complications such as paravalvular leak, annular rupture, and coronary artery occlusion. The methodology presented in this thesis could be potentially utilized to develop valuable pre-procedural planning tools to evaluate device performance for TAVI and eventually improve clinical outcomes.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54849
Date27 May 2016
CreatorsWang, Qian
ContributorsSun, Wei
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0017 seconds