Return to search

Hybrid Digital/RF Envelope Predistortion Linearization for High Power Amplifiers in Wireless Communication Systems

Hybrid Digital/RF Envelope Predistortion Linearization for High Power Amplifiers in Wireless Communication Systems

Wangmyong Woo

151 Pages

Directed by Dr. J. Stevenson Kenney


The objective of this research is to implement a hybrid digital/RF envelope predistortion linearization system for high-power amplifiers used in wireless communication systems. It is well known that RF PAs have AM/AM (amplitude modulation) and AM/PM (phase modulation) nonlinear characteristics. Moreover, the distortion components generated by a PA are not constant, but vary as a function of many input conditions such as amplitude, signal bandwidth, self-heating, aging, etc. Memory effects in response to past inputs cause a hysteresis in the nonlinear transfer characteristics of a PA. This hysteresis, in turn, creates uncertainty in predictive linearization techniques. To cope with these nonlinear characteristics, distortion variability, and uncertainty in linearization, an adaptive digital predistortion technique, a hybrid digital/RF envelope predistortion technique, an analog-based RF envelope predistortion technique, and a combinational digital/analog predistortion technique have been developed.
A digital adaptation technique based on the error vector minimization of received PA output waveforms was developed. Also, an adaptive baseband-to-baseband test system for the characterization of RF PAs and for the validation of linearization algorithms was implemented in conjunction with the adaptation technique. To overcome disadvantages such as limited correction bandwidth and the need for a baseband input signal in digital predistortion, an adaptive, wideband RF envelope predistortion system was developed that incorporates a memoryless predistortion algorithm. This system is digitally controlled by a look-up table (LUT). Compared with conventional baseband digital approaches, this predistortion architecture has a correction bandwidth that is from 20 percent to 33 percent wider at the same clock speeds for third to fifth order IMDs and does not need a digital baseband input signal.
For more accurate predistortion linearization for PAs with memory effects, an RF envelope predistortion system has been developed that uses a combination of analog-based envelope predistortion (APD) working in conjunction with digital LUT-based adaptive envelope predistortion (DPD). The resulting combination considerably decreases the computational complexity of the digital system and significantly improves linearity and efficiency at high power levels.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/6924
Date27 April 2005
CreatorsWoo, Wangmyong
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format4411133 bytes, application/pdf

Page generated in 0.0021 seconds