Return to search

Stereolithography Cure Process Modeling

Although stereolithography (SL) is a remarkable improvement over conventional prototyping production, it is being pushed aggressively for improvements in both speed and resolution. However, it is not clear currently how these two features can be improved simultaneously and what the limits are for such optimization.
In order to address this issue a quantitative SL cure process model is developed which takes into account all the sub-processes involved in SL: exposure, photoinitiation, photopolymerizaion, mass and heat transfer. To parameterize the model, the thermal and physical properties of a model compound system, ethoxylated (4) pentaerythritol tetraacrylate (E4PETeA) with 2,2-dimethoxy-2-phenylacetophenone (DMPA) as initiator, are determined. The free radical photopolymerization kinetics is also characterized by differential photocalorimetry (DPC) and a comprehensive kinetic model parameterized for the model material. The SL process model is then solved using the finite element method in the software package, FEMLAB, and validated by the capability of predicting fabricated part dimensions.
The SL cure process model, also referred to as the degree of cure (DOC) threshold model, simulates the cure behavior during the SL fabrication process, and provides insight into the part building mechanisms. It predicts the cured part dimension within 25% error, while the prediction error of the exposure threshold model currently utilized in SL industry is up to 50%. The DOC threshold model has been used to investigate the effects of material and process parameters on the SL performance properties, such as resolution, speed, maximum temperature rise in the resin bath, and maximum DOC of the green part. The effective factors are identified and parameter optimization is performed, which also provides guidelines for SL material development as well as process and laser improvement.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7235
Date20 July 2005
CreatorsTang, Yanyan
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format1292812 bytes, application/pdf

Page generated in 0.0017 seconds