Return to search

Optical properties of graphene/GaN hybrid structure

Optical properties of graphene/GaN hybrid structure were investigated by using a variety of optical spectroscopy techniques including low-temperature photoluminescence (PL) spectroscopy, time-resolved PL (TRPL) spectroscopy, confocal scanning micro-Raman spectroscopy.

Single-layer graphene grown by chemical vapor deposition was transferred to GaN epilayer surface, which is verified by the Raman spectrum with a sharp characteristic peak at ~2690 cm-1and a homogeneous Raman image. Three main band-edge emissions including the free exciton A transition (denoted as FXA), the donor bound exciton transition (denoted as DX) and the third peak (denoted as Ix) were well resolved in the PL spectra of the hybrid structure as well as the as-grown GaN epilayer at low temperatures. Interestingly, the FXA transition and Ix line of the GaN epilayer were found to be dramatically altered by the top graphene layer while the DX is almost unaffected. The intensity of Ix line substantially drops after the transfer of graphene layer on GaN, indicating surface defect nature of the Ix line. More interestingly, an unpredictable dip structure develops in the FXA peak when the temperature is beyond 50 K. Similar spectral structure change also occurred in the emission of free exciton B (referred as FXB)with higher transition energy .A free exciton dissociation and electron transfer model was proposed to explain the “dip effect”. More supporting evidence to the model was found in the time-resolved PL spectra of the hybrid structure and the control sample. The results showed the significant influence of graphene monolayer on the fundamental optical properties of GaN. / published_or_final_version / Physics / Master / Master of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/206660
Date January 2014
CreatorsWang, Jun, 王俊
ContributorsXu, S
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0023 seconds