Ferramenta computacional para análise de risers rígidos em catenária em contato com o solo marinho

Orientador: Prof. Dr. Juan Pablo Julca Avila / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Mecânica, 2015. / Atualmente, os risers rígidos em catenária ou SCRs (Steel Catenary Risers), que são tubos
longos de aço, apresentam-se como a melhor solução técnico-econômica na transferência de
petróleo e gás desde o solo marinho até uma plataforma flutuante. Os SCRs são de fácil fabricação, resistem altas pressões internas e hidrostáticas e também resistem altas temperaturas.
Porém, cuidado especial deve-se tomar no cálculo dos momentos fletores e força axial interna
no ponto de contato com o solo marinho, sendo estes parâmetros cruciais no projeto. Por outro lado, devido a que os SCRs interagem com o solo marinho, a plataforma à qual está conectada, correntezas e com o escoamento interno, a teoria de SCRs é complexa e não tem sido totalmente desenvolvida, requerendo para seu estudo a teoria de vigas curvas, tópicos de mecânica dos sólidos e dos fluidos, dinâmica não-linear, mecânica de ondas e mecânica dos solos.
Este trabalho tem como principal objetivo o desenvolvimento e implementação de uma ferramenta computacional para análise estática e dinâmica bidimensional de risers rígidos e flexíveis dispostos em catenária em contato com o solo marinho. A discretização espacial do riser é feita usando elementos finitos não lineares tipo de viga, incluindo grandes deslocamentos e rotações. A formulação co-rotacional é utilizada para o tratamento da não linearidade geométrica.
O método iterativo-incremental de Newton-Raphson é usado para resolver as equações de
equilíbrio estático e dinâmico. A integração no tempo das equações dinâmicas é feita usando
o esquema implícito de Newmark. A fim de garantir a estabilidade do esquema numérico implementado quando são impostos deslocamentos no topo do riser pelo método de penalização, é introduzido nas equações dinâmicas um termo de amortecimento estrutural para a filtragem das frequências espúrias induzidas por este tipo de excitação. O solo marinho é modelado como uma fundação elástica-linear do tipo Winkler e o método de penalização é usado para a imposição da condição de não penetração.
Simulações estáticas e dinâmicas de problemas geometricamente não lineares foram conduzidas para a avaliação do elemento de viga plana implementado neste trabalho. Os resultados obtidos foram comparados com resultados da literatura para a validação do código. A ferramenta computacional foi aplicada satisfatoriamente para resolver problemas estáticos e dinâmicos de risers rígidos e flexíveis. / Steel catenary risers (SCR) are slender steel pipes that hang free in the ocean, this represents
the best technical and economical solution for the oil and gas transfer from the seabed to the
floating platform. SCRs are of easy manufacturing, high internal and external pressure resistance and also high temperature resistance. Special care should be taken in the calculation of the bending and tension stresses at the touch down point (TDP) as this parameters are of main importance in the calculation of fatigue resistance. On the other side, as the riser interacts with many other elements as seawater currents, internal flow, floating platform and seabed SCRs theory is complex and is not yet well developed, requiring for its study deep knowledge of curved beam theory, solid and fluid mechanics, non-linear dynamics, wave theory and soil mechanics.
The main objective of this work is the development and implementation of a computational
tool for the static and dynamic two-dimensional analysis of steel catenary and flexible risers,
special attention is given to the seabed contact phenomena, to this end, numerical methods
for the solution of dynamic equations were implemented into a MATLAB code. The spacial
discretization of the riser geometric domain was made by finite element procedures, the large
deflections and rotations, inherent to risers geometric non linearity, were treated by means of
the co-rotational formulation. The incremental-iterative Newton-Raphson scheme is used to
solve the equations of static and dynamic equilibrium. Time domain integration is made using
Newmarks implicit method. To guarantee the numerical stability of the implemented code
when imposed a time-varying nodal displacement by the penalty method an structural damping is introduced. This damping filters spurious frequencies induced by the penalty method. The seabed is modeled as an elastic foundation of Winkler type, once again the penalty method is used to enforce the non-penetration condition.
Static and dynamic simulations of beams with geometrical non linearity were conducted in
order to test the stability and accuracy of the implemented code. These results were compared
with those available in specialized literature in order to validate the code. This computational
tool was successfully applied to the static and dynamic analysis of steel catenary risers.

Identiferoai:union.ndltd.org:IBICT/oai:BDTD:77488
Date January 2015
CreatorsValdivia, Fernando André Enciso
ContributorsAvila, Juan Pablo Julca, Brasil, Reyolando Manoel Lopes Rebello da Fonseca, Morooka, Celso Kazuyuki
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf, 130 f. : il.
Sourcereponame:Repositório Institucional da UFABC, instname:Universidade Federal do ABC, instacron:UFABC
Rightsinfo:eu-repo/semantics/openAccess
Relationhttp://biblioteca.ufabc.edu.br/index.php?codigo_sophia=77488&midiaext=70943, http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=77488&midiaext=70944, Cover: http://biblioteca.ufabc.edu.brphp/capa.php?obra=77488

Page generated in 0.0021 seconds