Return to search

INFLU?NCIA DO TRATAMENTO T?RMICO SOBRE O ALUM?NIO LIVRE DO SOLO / INFLUENCE OF THERMAL TREATMENT ON FREE SOIL ALUMINUM

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-05-12T13:19:40Z
No. of bitstreams: 1
1976 - Gabriel de Ara?jo Santos.PDF: 424018 bytes, checksum: 842e6f799add21cdd867e8159b9ae5c8 (MD5) / Made available in DSpace on 2017-05-12T13:19:40Z (GMT). No. of bitstreams: 1
1976 - Gabriel de Ara?jo Santos.PDF: 424018 bytes, checksum: 842e6f799add21cdd867e8159b9ae5c8 (MD5)
Previous issue date: 1976-07-14 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The purpose of the present work was to study the efect of heat
treatments on three different oxisols and to follow the changes
in free Al by chenical determinations and pot experiments with
plants.
Soil samples were treated in laboratory conditions for one hour
at temperatures from room temperature up to 300?C. Changes in
the soil chemical properties and mineralogical composition were
followed in the heat treatcd samples in order to detect any
modifications in the following properties: pH taken in H
KCl suspensions, organic carbon content, Fe and Al extracted
with KCl and XH4 Ac pH 4.8. A compelemtary experiment was
carried in order to defect any effcct of the treatment at 400?C
for 15 minutes, on dry matter production of sorgo plants grown76
on one of the oxisols.
One hour heat treatment on these soils at temperatures below
100?C caused little to no change in the above listed soil properties, where as deep changes occured when the soil was heated
above 100?C. Carbon content decreased slightly at 200?C and
dropped to half its value at 300?C. Fe(III) was sensibly
reduced to Fe(II) at the expenses of carbon oxidation. This
reduction caused an increase in Fe extraction in NH
4 AC reaching a maximum at 200?C. At higher temperatures a fast dropin extratable Fe was observed with a tendency to reach zero.
This observations seen to indicate that in the process of
burning the vegetation cover of tropical soils, fhe heat itself
can cause a benefic effect decrasing Al toxity. This effect
is enhanced by the neutralixing action of the ash produced. / No presente trabalho estudou-se o efeito do tratamento t?rmico em tr?s latossolos com o objetivo de detectar-se modifica??es nos teores de Al livre, e conseq?ente elimina??o de
toxides desse elemento para as plantas.
Nos solos, tratados em laborat?rio ? temperaturas
que variavam do ambiente at? 300?C, foram estudadas as modifica??es causadas pelo calor sobre: a composi??o mineral?gica,
o teor de carbono, o pH determinado em suspens?o aquosa e em
KCl, o Al e o Fe extra?dos em KCl 1N e AcNH4 pH 4,8. Foi ainda estudado o efeito do tratamento t?rmico a 200?C e 400?C sobre o crescimento de plantas sorgo em um dos solos que apresentava toxides.
Com um per?odo de aquecimento de uma hora, poucas mo-7 3
difica??es se fizeram sentir at? a temperatura de 100?C. A
partir da? houve profundas modifica??es na composic?o mineral?gica que culminaram com o desaparecimento da gibsita e da
goetita. O teor de carbono reduziu-se apreciavelmente com o
aquecimento ? temperatura de 200?C e acima desta, tendo produzido a redu??o do Fe3+ a Fe2+ . Com a redu??o do Fe3+, houve
um aumento progressivo da extra??o desse elemento, tanto em
KCl como AcNH4 pH 4,8, que atingiu um m?ximo a temperatura de
200?C, diminuindo rapidamente a temperatura mais altas.
O Al troc?vel, extra?do em KCl, sofreu uma diminui-
??o progressiva e acentuada, a propor??o que a temperatura do
tratamento aumentava, reduzindo-se a zero a temperatura de
300?C. O Al extra?do em AcAG14 pH 4,8 aumentou a propor??o
que a temperatura do tratamento crescia acima de 100?C. Esse
aumento ? provavelmente devido a solubiliza??o de estruturas
do alum?nio mais sujeitas ao ataque da solu??o de pH 4,8 proveniente de estruturas cristalinas ou semi-cristalinas, pr?-
existentes que foram fragmentadas pela desidrata??o consequete do tratamento t?rmico.
O pH do solo tamb?m aumentou consideravelmente com
ostratamentos acima de 100?C, chegando a valores que se situavam a mais de uma unidade acima do seu valor inicial. Da mesma forma o alum?nio "n?o troc?vel", representado pela diferen-74
?a entre os dois m?todos de extra??o aumentou com a temperatura.
Um experimento com sorgo usando como substrato o solo aquecido a 200?C e 400?C por 15 minutos confirmou as observa??es qu?micas de laborat?rio sobre a redu??o da toxides do
alum?nio por efeito do calor. Fica portanto provado que independentemente do efeito neutralizante da cinza proveniente
das queimadas, o pr?prio calor do fogo atua sobre o alum?nio
livre do solo, reduzindo-o a n?veis menos t?xicos para as
plantas.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1636
Date14 July 1976
CreatorsSantos, Gabriel de Ara?jo
ContributorsBraun, Walter Augusto i Gross
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Agronomia e Ci?ncia do Solo, UFRRJ, Brasil, Instituto de Agronomia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
RelationAmerican Society for Testing Materials. 1958. Index to the Xray powder date file. ASTM, Philadelphia. Ara?jo, J.E.G. 1949. O alum?nio troc?vel, poss?vel causa do crestamento do trigo. Anais da 2? reuni?o brasileira de ci?ncia do solo. Campinas. p.329-337 Baldanzi, G. 1957. Efeito das queimadas sobre a produ??o das culturas e a fertilidade do solo. Anais 6? congresso brasileiro de ci?ncia do solo. Salvador. p.223 Bhunbla, D.R., McLean, E.D. 1965. Aluminum in Soils: VI. Changes in pH dependent acidity, cation exchange capacityand extractable aluminum with additions of lime to surface soils. Soil Sci. Soc. Amer. Proc. 29:370-374 Bradfield, R. 1923. The nature of acidity of colloidal clay of acid soils. J. Amer. Chemic. Soc. 45:2669-2678 Brasil, Minist?rio da Ind?stria e do Com?rcio. Instituto Brasileiro do Caf?. 1972. Reconhecimento detalhado e apetid?o agr?cola dos solos em ?rea piloto no sal do estado de Minas Gerais. Colabora??o da Divis?o de Pesquisa Pedol?gica do Minist?rio da Agricultura. Braun, W.A.G. 1971. Aquatic Chemistry of Al(III). Tese. University of California. Davis. Brown G. 1963. The X-ray identification and crystal structures of clay minerals. Nineralogical Society. London. 543 p. Caill?re, S., Gatineau, M.M., & H?nin, S. 1960. preparation ? basse temperature d'hematite alumineuse. C.R. Acad. Sci. Fr. 250: 3677-367979 Camargo, M.N., Bennema, J. 1966. Delineamento esquem?tico dos solos do Brasil. Pesq. Agrop. Bras. 1:47-54 Clark, H.D., Pratt, P.F. 1961. Methods of analysis for soil, plants and waters. University of California Division of Agricultural Sciences. 309 p. Costa, A.D.L., Godoy, H. 1962. Contribui??o para o reconhecimento do clima do solo de Ribeir?o Preto. Bragantia. 40: 689-742 Day, P.R. 1965. Particle fractionation and particle size analysis. In: Black, C.A. (ed). Methods of soil analysis. Part I. Agronomy monograph n? 9. American Society of Agronomy, Madison, Wis. p. 545-566 Greenland, D.J. 1965. Intcration between clays and organic compounds in soils. I- Mechanisms of interaction between clays and defined organic compounds. Soils and fertilizers. 28(5): 415-425 Greenland, D.J. 1965. Interation between clays and organic compounds in soils. 2- Adsorption of soil properties.8 0 Soils and fertilizers. 28(6): 521-532 Hartwell, R.L., Pember, F.R. 1918. The presence of aluminum as a for difference of called acid soil on barley and rye. Soil Sci. 6:259-279 Heyward, F. 1936. Soil changes associated with forest fires in the long leaf pine region of the south. Amer. Soil Survey Bull. 17: 41-42 Hsu, P.H. 1563. Effect of initial pH, phosphate and silicate on the determination of aluminum with aluminon. Soil Sci. 96: 230-238 Hsu, P.H. 1968. Heterogeneity of montmorillonite surface and its effects on the nature of hidroxy-aluminum interlayers. Clay and clay minerals. 16: 303-311 Jackson, M.L. 1958. Soil chemical analysis. Pretice-hall. New Jersey. 498 p. Jackson, M.L. 1963. Aluminum bonding in soils: A unifying principle in soil science. Soil Sci. Soc. Amer. Proc. 27: 1-10Jackson, M.L. 1964. Chemical of soils. In: F.E. Bear (ed). Chemistryof soil. 2nd ed. Reinhold Publ. Corp., New York. p. 71-141 Jacomine, B.K.T. 1969. Descri??o das caracter?sticas morfol?gicas, f?sicas qu?micas e mineral?gicas de alguns perfis de solos sob vegeta??o de cerrado. Boletim T?cnico 11. Minist?rio da Agricultura. Rio de Janeiro. p.45-68 Klages, M.G., White, J.L. 1957. A chlorite-like mineral in Indiana soils. Soil Sci. Amer. Proc. 21:16-20 Leal, J.R. 1971. Adsor??o de fosfato em latossolos sobvegeta- ??o de cerrado. Tese. Universidade Federal Rural do de Janeiro. 96 p. Lin, C., Coleman, N.T. 1960. The measurement of exchangeable aluminum in soils and clays. Soil Sci. Soc. Amer. Proc. 24: 444-446 Lindsay, W., Peech, L.M. & Clark, J.S. 1959. Determination of aluminuion activity in soil extracts. Soil Sci. soc. Amer. Proc. 23: 266-269.82 Lippens, D.C., Sterggerda, J.J. 1970. Active alumina in phisical and chemical aspects of adsorbents and catalysts. Edicted by B.G. Lingeu. Academic Press. N.W. p.171-211 Mattson, S., Hester, J.B. 1933. The laws of Soil colloidal behavior: XII. The amphoteric nature of soils in relation to Al toxicity. Soil Sci. 36: 229-244 McLean, E.O., Heddleson, M.R., Bartlett, R.J., & Holowaychuk, N. 1958. Aluminum is soils. I- Extraction methods and magnitudes in clays in Ohio soils. Soil Sci. Soc. Amer Proc. 22: 382-383 McKeauge, J.A., Brydon, J.E., & Miles, N.M. 1971. Differention of forms of extractable iron and aluminum in soils. Soil Sci. Soc. Amer. Proc. 35: 33-38 Misra, U.K., Blauchar, R.W., & Upchurch, W.J. 1974. Aluminun content of soil extracts as a function of pH and ionic strength. Soil Sci. Soc. Amer. Proc. 38: 897-902 Moniz, A.C., Jackson, M.L. 1967. Quantitative mineralogical analysis of Brazilian soils derived from basaltic rocksand slaite. Wisconsin Soil Sci. Rpt 212. University of Wisconsin, Madison. Wisc. Neto, F.L., Bertoni, J. 1974. Efeito da queima sobre algumas propriedades f?sicas e qu?micas do solo e sobre a produ- ??o de milho. Anais do 14? congresso brasileiro de ci?ncia do solo. Santa Maria. p. 690-701 Nye, P.H., Craig, D., & Coleman, N.T. 1961. Ion-exchange equilibria involving aluminum. Soil Sri. Soc. Amer. Proc. 25: 14-17 Nye, P.H., Greenland. D.J. 1964. Changes in the soil after elearing tropical forest. Plant and Soil. 21:101-112 Nye, P.H., Greenland, D.J. 1965. The soil under shifting cultivation. Technical Communication No. 51. Cowgate, Norvich. 156 p. Pieere, W.H., Pohlman, G.G., & McIlusine, T.C. 1932. Soluble Al studies: 1- The concentracion of Al in the displaced soil solution of naturally acid soils. Soil. Sci. 34: 145-16084 Pionke, H.B., Corey, R.B. 1967. Relations between acidic aluminum and soil pH, clay, and organic matter. Soil Sci. Soc. Amer. Proc. 31: 749-752 Pratt, P.F., Bair, F.L. 1961. A comparison of three reagents for extration of aluminum from soils. Soil Sci. 91:357- 359. Ragland, J.L., Coleman, N.T. 1959. The hydrolysis of aluminum salts in clays and soil systems. Soil Sci. Soc. Amer, Proc. 24: 457-460 Raupach, M. 1963. Solubility of simple aluminum componds expecte in soils. Aust. J. Soil Res. 1(1): 55-62 Reeve, N.G. Sumner, M.E. 1971. Cation exchange capacity and exchangeable aluminum, in Natal oxisols. Soil Sci. Amer. Proc. 35: 38-42. Rich, C.I. 1968. Hidroxi interlayers in expansible layer silicates. Calys and Clay Minerals. 16: 15-30 Rich, C.I., Obsenshain, S.S. 1955. Chemical and clay mineral85 properties of a red-yellow podzolic soil derived from muscovite schist. Soil Sci. Soc. Amer. Proc. 19: 334- 339 Richburg, J., Adans, F. 1970. Solubility and hidrolysis of aluminum in soil solutions and satured paste extracts. Soil Sci. Soc. Amer. Proc. 34: 728-734 Rusahel, A.P., Alvahydo, R., Barbosa, I., & Sampaio, M. 1968. Influ?ncia do excesso de alum?nio no feij?o cultivado em solu??o nutritiva. Pesq. Agropec. Bras. 3: 229-233 Schofield, R.K. 1949. effect of pH on the electric change carried by clay particles. J. Soil Sci. 1: 1-8 Schnitzer, M. 1969. Reactions between fulvic acid, a soil humic compound and inorganic soil constituents. Soil Sci. Amer. Proc. 33: 75-81 Schnitzer, M., Hoffman, I. 1967. Thermogravimetric analysis of the salts and metal complexes of a soil fulvic acid. Ceochimica et Cosmochimica Acta. 31: 7-1586 Schwertmann, V., Fischer, W.R. & Fendorf, H. 1968. The influence of organic compounds on the formation of iron oxides. Inst. Congres. Soil Sci. Trans. 9th Adelaide. Aust. 1: 645-655 Singh, S.S. 1972. The effect of temperature on the ion activity product (N)($H)3 and its relation to lime potencial and degree of base saturation. Soil Sci, Soc. Amer. Proc. 1: 47-50 Veitch, F.P.1902. The estimation of soil acidity and the lime requeriments of soils. J. Amer. Chem. Soc. 24: 1120- 1128 Veitch, F.P. 1904. Comparison of methods Eor the estimation of soil acidity. J. Amer. Chem. Soc. 26: 637-662 Vettori, L. 1969. M?todos de an?lises de solos. Equipe de pedologia e fertilidade do solo. Boletim t?cnico 7. Rio de Janeiro. 24. p. Wurman, E., Whiteside, E.P., & Mortland, M.M. 1959. Properties and genesis of finer textured subsoil bonds in87 some sandy Michigan soils. Soil Sci. Soc. Amer. Proc. 23: 135-143 Weaver, R.M. 1974. Soils of the Central plateau of Brazil: Chemical and mineralogical properties. Agronomy Mimeo 74-8. Cornell University. Ithaca, N.Y. Whitting, L.D. 1965. X-ray diffraction techniques for mineral identification and mineral composition, p. In: Black, C. A. (ed). Methods of soil analysis, Part I. Agronomy, Monograf n? 9. American Society of Agronomy, Publisher. p.671-696.

Page generated in 0.0032 seconds