Return to search

Influência do inseticida Malathion sobre a mortalidade e a arquitetura branquial de camarões Macrobrachium amazonicum (HELLER, 1862) oriundos da bacia do rio Grande

A biota nos ecossistemas aquáticos é geralmente exposta a diversas condições de
estresse, como variações ambientais naturais e distúrbios antropológicos, incluindo as
descargas de poluentes nos recursos hídricos. Sendo assim importante a realização de estudos
que avaliem os efeitos desses poluentes sobre os ecossistemas. O malathion é um exemplo de
poluente, pois, é um inseticida comumente utilizado como defensivo agrícola em culturas ao
redor do mundo e, embora apresente baixa toxicidade para espécies de mamíferos, espécies
aquáticas podem ser sensíveis mesmo a pequenas concentrações. Dentre os diversos
organismos aquáticos os crustáceos tem se destacado como organismos sensíveis para avaliar
a poluição do ecossistema aquático. Nesse sentido, o objetivo do presente trabalho foi avaliar
os efeitos do malathion sobre camarões Macrobrachium amazonicum através da obtenção da
DL50 e da análise morfológica de suas brânquias. Para isso, camarões nativos do rio Grande
foram capturados e aclimatados ao ambiente laboratorial para a realização de bioensaios. Os
camarões foram divididos em grupos de dez animais cada e expostos a concentrações
crescentes do inseticida por 48 horas. Nossos achados mostraram que a DL50 foi atingida a
0,73 mg/L de malathion, e que alterações relevantes na arquitetura das brânquias podem ser
observadas em camarões expostos a concentrações de 1,25 a 1,5 mg/L do inseticida. Este é o
primeiro estudo demonstrando que mesmo em curto prazo, o malathion interfere na estrutura
microscópica das brânquias de camarões do gênero Macrobrachium, e vem contribuir para
uma melhor compreensão dos efeitos promovidos por determinados defensivos agrícolas
sobre organismos aquáticos que, comumente ficam expostos a estes. / Biota in aquatic ecosystems is usually exposed to various stress conditions, like
natural environmental variations and anthropological disturbs including pollutant discharges
into water resources. Malathion is an insecticide commonly used as an agricultural pesticide
in crops around the world, and although it presents low toxicity to mammalian species,
aquatic species may be sensitive even at small concentrations. Among the various aquatic
organisms, crustaceans have distinguished themselves as sensitive organisms to evaluate the
pollution of the aquatic ecosystem. In this sense, the objective of the present work was to
evaluate the effects of malathion on Macrobrachium amazonicum shrimps by obtaining LD50
and morphological analysis of the gills. For this, native prawns of the Rio Grande were
captured and acclimated to the laboratory environment for the realization of bioassays. The
shrimp were divided into groups of ten animals each and exposed to increasing concentrations
of the malathion for 48 hours. Our findings showed that the LD50 was reached at 0.73 mg/L
malathion, and that relevant changes in the architecture of the gills can be observed in shrimps
exposed to concentrations of 1.25 and 1.5 mg/L of the insecticide. This is the first report
demonstrating that even in the short term, malathion interferes in the microscopic structure of
Macrobrachium shrimp gills, and contributes to a better understanding of the effects promoted
by certain pesticides on aquatic organisms that are commonly exposed to these.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:tede/604
Date28 August 2018
CreatorsARDENGUI, Angelo Antonio Franzoi
ContributorsBURANELLO, Patrícia Andressa de Almeida, 28926939855, http://lattes.cnpq.br/7000238491806644
PublisherUniversidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais - ICBN, Brasil, UFTM, Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFTM, instname:Universidade Federal do Triangulo Mineiro, instacron:UFTM
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
RelationABE, F. R. Avaliação ecotoxicológica e risco ambiental dos inseticidas utilizados no controle de larva de Aedes aegypti e peixes Daphnia magna, Lemna minor. p. 130, 2012. SAMPAIO, S. R; NAGATA J. K; LOPES, O. L; MASUNARI, S. Freshwater shrimps (Crustacea , Caridea ) from the eastern Atlantic Basin with a tabular identification key. Acta Biológica Paranaense, v. 38, p. 11–34, 2009. ARIAS, A. R. L. et al. Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Ciência & Saúde Coletiva, v. 12, n. 1, p. 61–72, 2007. BAKRY, F. A.; HASHEESH, W. S.; HAMDI, S. A. H. Biological, biochemical, and molecular parameters of Helisoma duryi snails exposed to the pesticides Malathion and Deltamethrin. Pesticide Biochemistry and Physiology, v. 101, n. 2, p. 86–92, 2011. BRASIL. Lei nº 11.794, de 08.10.2008. Inciso VII do § 1o do art. 225 da Constituição Federal, estabelecendo procedimentos para o uso científico de animais. Brasilia, DF, 2008. CENGIZ, E. I.; ÜNLÜ, E. Histopathology of Gills in Mosquitofish, Gambusia affinis After Long‐Term Exposure to Sublethal Concentrations of Malathion. Journal of Environmental Science and Health, part B, v. 38, 581-589, 2003. SANTOS, P. C. G; COSTABILE, D; BENEVIDES, F. B; BATISTA, J. C; SAROBA, L; SEGURA, R; MANTOVANI, T. M. Intoxicação por organofosforados. Revista científica eletrônica de medicina veterinária, n. 03, 2004. COLER, R. A. et al. A preliminary report on the application of Macrobrachium amazonicum Heller, 1862 (Decapoda: Palaemonidae) as a biomarker. Hydrobiologia, v. 412, p. 119–121, 1999. DÁVILA GARCIA, C. R.; MAGALHÃES, C. Revisão taxonômica dos camarões de água doce (Crustacea: Decapoda: Palaemonidae, Sergestidae) da Amazônia Peruana, Acta Amazonica, 2003. DUTRA, F. M. et al. Acute Toxicity of Nitrite to Various Life Stages of the Amazon River Prawn, Macrobrachium amazonicum, Heller, 1862. Bulletin of Environmental Contamination and Toxicology, v. 97, n. 5, p. 619–625, 2016. DE GUISE, S.; MARATEA, J.; PERKINS, C. Malathion immunotoxicity in the American lobster (Homarus americanus) upon experimental exposure. Aquatic Toxicology, v. 66, n. 4, p. 419–425, 2004. ERKMEN, B., KOLANKAYA, D. Effects of water quality on epithelial morphology in the gill of Capoeta tinca living in two tributaries of Kizilirmak River, Turkey. Bull Environ Contam Toxicol 64, 418-425, 2000.33 FALEIROS, R. O. et al. Differential adjustment in gill Na+/K+- and V-ATPase activities and transporter mRNA expression during osmoregulatory acclimation in the cinnamon shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Journal of Experimental Biology, v. 213, n. 22, p. 3894–3905, 2010. FORGET, J., PAVILLON, J.F., MENANSRIA, M.R., BOCQUENE, G., Mortality and LC50 values for several stages of the marine copepod Tigriopus brevicornis (Muller) exposed to the metals arsenic and cadmium and the pesticides atrazine, carbofuran, dichlorvos, and malathion. Ecotoxicol Environ Saf, 40, 239-244, 1998. FREIRE, C. A.; ONKEN, H.; MCNAMARA, J. C. A structure-function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, v. 151, n. 3, p. 272–304, 2008. HENRY, R.P., LUCU, C., ONKEN, H., WEIHRAUCH, D., Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol v.3, n. 431, 2012. . ISLAM, M. S.; TANAKA, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Marine Pollution Bulletin, v. 48, n. 7–8, p. 624–649, 2004. JONHSON, W.W., FINLEY, M.T. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates. Resource Publication 137. US Department of Interior, Fish and Wildlife Service, Washington, DC, 1980 KEY, P.B., FULTON, M.H., SCOTT, G.I., LAYMAN, S.L., WIRTH, E.F.,. Lethal and sublethal effects of malathion on three life stages of the grass shrimp, Palaemonetes pugio. Aquatic Toxicology n. 40, p. 311-322, 1998. KIDD, H., JAMES, D.R., The Agrochemicals Handbook, third ed. Royal Society of Chemistry Information Services, Cambridge, UK, 1991. LEONE, F.A., LUCENA, M.N., GARÇON, D.P., PINTO, M.R., MCNAMARA, J.C.,. Gill Ion Transport ATPases and Ammonia Excretion in Aquatic Crustaceans, Acid-Base Balance and Nitrogen Excretion in Invertebrates Mechanisms and Strategies in Various Invertebrate Groups with Considerations of Challenges Caused by Ocean Acidification, p. 61-107, 2017. LI, S.N., FAN, D.F., Correlation between biochemical parameters and susceptibility of freshwater fish to malathion, J. Toxicol Environ Health. n. 48, p. 413-418, 1996. MALATHION, E. Malathion 500 e. p. 1–12, [s.d.]. MAHARAJAN, A., NARAYANASAMY, Y., GANAPIRIYA, V., SHANMUGAVEL, K., Histological alterations of a combination of Chlorpyrifos and Cypermethrin (Nurocombi) insecticide in the fresh water crab, Paratelphusa jacquemontii (Rathbun). The Journal of Basic & Applied Zoology n. 72, p. 104-112, 2015.34 MENSAH, P. K.; MULLER, W. J.; PALMER, C. G. Acute toxicity of Roundup® herbicide to three life stages of the freshwater shrimp Caridina nilotica (Decapoda: Atyidae). Physics and Chemistry of the Earth, v. 36, n. 14–15, p. 905–909, 2011. MORAES, R. B. C. et al. Efeito de sedimentos contaminados sobre a excreção de nitrogênio do camarão Penaeus paulensis. Brazilian Archives of Biology and Technology, v. 42, n. 4, p. 0–0, 1999. PINTO, M. R; LUCENA, M. N. Qualidade da água: metais poluentes, monitoramento, biomarcadores e métodos de identificação. In: HAYASHI, C. Tópicos de atualização em ciências aquáticas. Uberaba: UFTM, 2014. REDDY, D. S. Neurosteroids for the potential protection of humans against organophosphate toxicity. Annals of the New York Academy of Sciences, v. 1378, n. 1, p. 25–32, 2016. RICO, A., WAICHMAN, A.V., GEBER-CORREA, R., VAN DEN BRINK, P.J., 2011. Effects of malathion and carbendazim on Amazonian freshwater organisms: comparison of tropical and temperate species sensitivity distributions. Ecotoxicology, n. 20, p. 625-634. SARAVANA B, P., GERALDINE, P., Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan. Aquat Toxicol, n. 50, p. 331- 339, 2000. SARAVANA, B, P.; GERALDINE, P. Biochemical Stress Responses in Tissues of the Prawn Macrobrachium malcolmsonii on Exposure to Endosulfan. Pesticide Biochemistry and Physiology, v. 70, n. 1, p. 27–41, 2001. SAWHNEY, A.K., JOHAL, M.S. Erythrocyte alterations induced by malathion in Channa punctatus (Bloch). Bull Environ Contam Toxicol, 64, 398-405, 2000. SHAO-NAN, L., DE-FANG, F., 1996. Correlation between biochemical parameters and susceptibility of freshwater fish to malathion. J. Toxicol. Environ. Health n. 48, p. 413–418. SILVA, J. C. D. Biologia e ecologia dos camarões de água doce Macrobrachium amazonicum (Helle 1862) e Macrobrachium jelskii (Miers 1778) (Crustacea: Caridea: Palaemonidae) no Rio Grande, Região de Planura, MG. Universidade Estadual Paulista, Instituto de Biociências de Botucatu, p. 85, 2010. TIETZE, N.S., HESTER, P.G., HALLMON, C.F., OLSON, M.A., SHAFFER, K.R., 1991. Acute toxicity of mosquitocidal compounds to young mosquitofish, Gambusia affinis. Am. Mosq. Control Assoc. n.7, p. 290–293. VEGAD, J.L., A Textbook of Veterinary General Pathology. Cbs Publishers &Distributors, New Delhi, p 589, 2015. WERNER, P.R., Patologia Geral Veterinária Aplicada. Genroca, São Paulo, p 233-243, 2010. WILKINSON, K. J.; REINHARDT, A. Kevin J. Wilkinson and Alain Reinhardt, 2005.35 YUAN, C. Y.; CHEN, C. H.; K. YUAN, Y.,. Sublethal Effects of Paraquat and Malathion on the Freshwater Shrimp, Macrobrachium nipponense, Acta Zoologica Taiwanic, 2004. ZHANG, F. et al. Differential Expression of Hemolymph Proteins Between Susceptible and Insecticide-Resistant Blattella germanica ( Blattodea : Blattellidae ). Molecular Ecology and Evolution, v. 43, p. 1117–1123, 2014.

Page generated in 0.0029 seconds