Return to search

Estudo da formação de gelo durante o armazenamento a granel de vegetais congelados

Este trabalho propõe um modelo de transferência de calor e massa para prever a formação de gelo em um container preenchido com legumes congelados. O problema físico é modelado como um meio poroso composto pelo próprio produto e o ar em seu entorno. O regime de convecção natural é assumido dentro do container, o qual promove o transporte de massa. Como uma primeira validação, o modelo é simulado considerando diferentes temperaturas de ar externo, causadas por flutuações da vizinhança. Resultados para quatro ciclos de temperaturas foram comparados, variando separadamente a temperatura média do ar, amplitude e frequência de oscilação. De modo geral, é observado que a temperatura do produto se comporta assim como era esperado e este resultado é diretamente associado à formação de gelo dentro do container. A formação de gelo cresce com uma maior amplitude de oscilação, porém decresce com um aumento na frequência e na temperatura média. Os parâmetros do modelo foram obtidos para dois diferentes produtos: fatias de cenouras congeladas e vagens congeladas, ambos em meio ao ar. As definições de parâmetros são oriundas de revisão bibliográfica, medições experimentais e simulações numéricas. Os parâmetros encontrados para a caracterização desses meios porosos foram similares para ambos os produtos, mesmo eles possuindo diferentes geometrias. A validação experimental foi feita para as fatias de cenoura considerando dois ciclos de temperatura O modelo numérico é capaz de prever o campo de velocidades do ar, as temperaturas do produto e a formação de gelo local. Os resultados foram validados em relação a um grupo independente de resultados numéricos, tal comparação apresentou uma boa concordância. A circulação de ar encontrada é, de fato, devido à convecção natural. O comportamento da temperatura dos produtos simulados concorda com os valores medidos e os valores de temperaturas diferem por menos de 12%. Com respeito à formação de gelo, o modelo é capaz de prevê-la corretamente nas regiões mais suscetíveis a este fenômeno. Porém, a quantidade de gelo formado prevista pelo modelo (1,56 g/semana) é menor do que a experimental (4,67 g/semana), apesar de serem de mesma ordem de magnitude. O efeito de cada parâmetro no modelo é estudado visando detectar maneiras de aprimorar o modelo. Foi encontrado que os parâmetros mais importantes para a formação de gelo total são a difusividade de massa efetiva e o coeficiente de transferência de calor convectivo dentro do container. Ajustando estes parâmetros duas vezes foi possível encontrar resultados melhores com respeito à formação de gelo (3,09 g/semana). / A model of heat and mass transfer is proposed in order to predict frost formation into a closed container filled with frozen vegetables. The physical problem is modeled as a macroporous media composed by the product itself and the surrounding air. Natural convection air flow is assumed into the container, who promotes water mass transport. As a first validation, the model is simulated for several exterior air temperatures, under environmental fluctuations (boundary conditions). Results of four temperature cycles were compared, varying average air temperature, amplitude and frequency of oscillation, one by one. As a general result, it is observed that the product temperature behavior is as expected, and it is directly associated with frost formation into the container. Frost formation increases with large amplitude of oscillation, but decreases with higher frequencies and higher mean temperatures. Model parameters were obtained for two assembling: frozen slices of carrots and air, and frozen extra thin green beans and air. Parameter definition and evaluation combines literature review, measurements and numerical simulation. In general, parameters which characterize these porous media were similar for both products, even though they display different geometries. The experimental validation is performed for carrot slices with two temperature cycles The numerical model is able to predict air velocity field, air and product temperatures, and local frost formation. Results are validated in respect to a set of independent experimental results that shown a good agreement. Air flow circulation is as expected due to natural convection. Product temperature simulated behavior agrees with measurements, and temperature values differ by less than 12%. Respect to frost formation predictions, the model predicts correctly the most susceptible regions to frost formation. However, the quantity of frost formed predicted by the model (1.56 g/ week)is lower than the experimental one (4.67g/week), despite being of the same order of magnitude. The effect of each parameter in the model is study in order to detect how to improve the model. The most important parameters affecting total frost formation are effective mass diffusivity and convective heat coefficient into the storage container. Adjusting these parameters to twice, better results in terms of frost formation could be obtained (3.09 g/ week).

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/179574
Date January 2018
CreatorsUrquiola Mujica, Ana
ContributorsSchneider, Paulo Smith
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds