Return to search

Avaliação dos efeitos cardiovasculares do aceturato de diminazeno (DIZE) em ratos submetidos à sobrecarga pressórica / Evaluation of the cardiovascular effects of diminazene aceturate (DIZE) in pressure-overloaded rat hearts

Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-08T17:59:46Z
No. of bitstreams: 1
LARISSA MATUDA MACEDO.pdf: 1925394 bytes, checksum: f5aee8d90e490ce7d7b1a21ffa29993c (MD5) / Made available in DSpace on 2014-09-08T17:59:46Z (GMT). No. of bitstreams: 1
LARISSA MATUDA MACEDO.pdf: 1925394 bytes, checksum: f5aee8d90e490ce7d7b1a21ffa29993c (MD5)
Previous issue date: 2014-02-12 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Activation of the Angiotensin Converting Enzyme 2 (ACE2)-Angiotensin-(1-7) [Ang(1-7)]-Mas Receptor axis results in protective effects in the cardiovascular system. ACE 2 is an important component of Renin-Angiotensin System, because it is able to convert Angiotensin II in Ang-(1-7). Recents studies have shown that diminazene aceturate (DIZE) act as an activator of ACE 2. The objective of this study was to evaluate the cardiovascular effects of chronic treatment with DIZE in pressureoverloaded rats and the possible mechanisms involved in these effects. Male Wistar rats (200-350 g) were divided in four groups: (1) Sham; (2) Coarcted (abdominal aortic banding, CAA); (3) CAA + DIZE (1 mg/kg, gavage); e (4) CAA + DIZE (1 mg/kg, gavage) + A-779 (120 µg/day, osmotic mini-pumps). Twenty one days after surgery procedure, the blood pressure was recorded, the hearts were isolated and perfused according to Langendorff method. Vascular reactivity was measured by isolated aortic ring preparation. In order to evaluate the cardiac hypertrophy, the left ventricular mass index (VMI) was calculated through the ratio of the left ventricular wet weight to tibia length. The cross-sectional area of cardiomyocytes (CSA) was also evaluated. The mRNA levels for ANP, BNP e TGF-β were also evaluated by qRT-PCR. The expression of ACE-2 and ERK1/2, AKT, mTOR, GATA-4, catalase and SOD proteins involved in hypertrophic pathways was analyzed by Western Blot technique. The results are presented as means ± SEM. One-way ANOVA followed by the Newman-Keuls post-test was used to analyze the blood pressure, cardiac morphometric parameters, isolated heart, qRT-PCR and Western Blot experiments. Two-way ANOVA followed by the Bonferroni post-test was used for aortic rings preparation protocols. All statistical analyses were considered significant at P<0.05. Isolated hearts from coarcted rats presented a significant decrease in the left ventricular end systolic pressure (128.1 ± 9.0 vs. 79.1 ± 12.8 mmHg in CAA, P<0.05), left ventricular developed pressure (118.1 ± 8.9 vs. 69.0 ± 12.7 mmHg in CAA, P<0.05), +dP/dt (2295.0 ± 161.8 vs. 1406.0 ± 246.5 mmHg/s in CAA, P<0.05) and dP/dt (1787.0 ± 166.0 vs. 1066.0 ± 181.9 mmHg/s in CAA, P<0.05). The DIZE treatment attenuated all of these effects induced by CAA. Moreover, DIZE treatment increased the coronary flow in hypertrophic hearts (CAA: 11.6 ± 0.8 vs. CAA+DIZE: 15.8 ± 0.6 mL/min, P<0.05). This effect was blocked by A-779. Pressure–overloaded hearts showed a significant increase in VMI (0.17 ± 0.01 vs. 0.21 ± 0.01 g/cm in CAA, P<0.05) and CSA (8.98 ± 0.54 vs. 10.72 ± 0.27 µm in CAA, P<0.05). The chronic treatment with DIZE prevented the heart hypertrophy (10.72 ± 0.27 in CAA vs. 9.25 ± 0.23 µm in CAA+DIZE, P<0.05). Indeed, treatment with A-779 attenuated the antihypertrophic effect induced by DIZE treatment. The coarcted rats presented a increase in mRNA expression of ANP, BNP and TGF-β and the DIZE treatment reverted this effect. The pressure overload decreased the acetylcholine-induced relaxation in aortic rings from coarcted rats and treatment with DIZE was not able to improve this effect. The coarctation decreased the phosphorylation of the AKT, which was not changed by DIZE treatment. The expression of ACE 2, total and phosphorylated ERK1/2, total AKT, mTOR, SOD and catalase was not changed by coarctation or by ACE 2 activation. These results show that the chronic treatment with DIZE was efficient in preventing the left ventricular hypertrophy and cardiac dysfunction induced by pressure overload. These effects were independent of changes in the expression of ACE 2, ERK1/2, AKT, mTOR, SOD and catalase. Thus, DIZE has important therapeutic potential for cardiovascular diseases. / A ativação do eixo Enzima Conversora de Angiotensina 2 (ECA2)-Angiotensina-(1-7) [Ang-(1-7)]-Receptor Mas resulta em importantes efeitos protetores no sistema cardiovascular..A ECA 2 é um importante componente do Sistema ReninaAngiotensina, pois hidrolisa a Angiotensina II em Ang-(1-7). Recentes estudos tem demonstrado que o aceturato de diminazeno (DIZE) apresenta capacidade de aumentar a atividade da ECA 2. Sendo assim, o objetivo deste estudo foi avaliar os efeitos cardiovasculares do DIZE nas mudanças induzidas por sobrecarga pressórica e possíveis mecanismos intracelulares envolvidos nestes efeitos. Foram utilizados ratos Wistar (200-350 g), divididos em quatro grupos: (1) Sham; (2) Coarctados (coarctação da aorta abdominal, CAA), (3) CAA + DIZE (1 mg/kg, gavagem); e (4) CAA + DIZE (1 mg/kg, gavagem) + A-779 (120 µg/dia, mini-bombas osmóticas). Decorridos 21 dias da coarctação, a pressão arterial dos animais foi registrada, os corações foram isolados e perfundidos pelo método de Langendorff com pressão constante. A reatividade vascular foi avaliada por preparação de anéis de aorta isolada. Para avaliar a hipertrofia cardíaca, o peso dos ventrículos esquerdos foi normalizado pelo comprimento das tíbias e expresso como índice de massa ventricular (IMV), além da área de secção transversa dos cardiomiócitos (AST) ser também medida. Os níveis de mRNA para ANP, BNP e TGF-β também foram avaliados por qRT-PCR. A expressão de ECA 2 e das proteínas ERK1/2, AKT, mTOR, GATA-4, SOD e catalase, envolvidas em vias pró-hipertróficas, foi analisada através da técnica de Western Blot. Os resultados foram apresentados como média ± erro padrão da média. Para as análises de pressão arterial média, coração isolado e parâmetros morfométricos, qRT-PCR e Western Blot, foi utilizado o teste ANOVA One Way seguido pelo pós-teste de Newman-Keuls. Para a reparação de anéis de aorta isolada, foi usado ANOVA Two Way seguido pelo teste de Bonferroni. As diferenças foram consideradas significativas com P<0,05. Os corações isolados dos ratos coarctados apresentaram diminuição significativa da pressão ventricular esquerda ao final da sístole (128,1 ± 9,0 vs. 79,1 ± 12,8 mmHg em CAA, P<0,05), pressão desenvolvida pelo ventrículo esquerdo (118,1 ± 8,9 vs. 69,0 ± 12,7 mmHgem CAA, P<0,05), +dP/dt (2295,0 ± 161,8 vs. 1406,0 ± 246,5 mmHg/s em CAA, P<0,05) e -dP/dt (1787,0 ± 166,0 vs. 1066,0 ± 181,9 mmHg/s em CAA, P<0,05). A ativação da ECA 2 atenuou a disfunção ventricular esquerda induzida pela coarctação. O tratamento com DIZE aumentou o fluxo coronariano dos corações hipertrofiados (CAA: 11,6 ± 0,8 vs. CAA+DIZE: 15,8 ± 0,6 mL/min, P<0,05). Este efeito foi loqueado pelo A-779. Os corações submetidos a sobrecarga pressórica mostraram um umento significativo do IMV (0,17 ± 0,01 vs. 0,21 ± 0,01 g/cm em CAA, P<0,05) e AST (9,37 ± 0,55 vs. 10,72 ± 0,27 µm em CAA, P<0,05). A ativação da ECA 2 preveniu a hipertrofia cardíaca (AST: 10,72 ± 0,27 vs. 9,25 ± 0,23 µm em CAA + DIZE, P<0,05). O tratamento com A-779 atenuou o efeito anti-hipertrófico produzido pelo DIZE nos corações coarctados. A coarctação também promoveu aumento da expressão de mRNA de ANP, BNP e TGF-β e o tratamento com DIZE reverteu esse efeito. A sobrecarga pressórica diminuiu o relaxamento induzido por acetilcolina em anéis de aorta isolada e o tratamento com o ativador da ECA 2 não foi capaz de alterar esse efeito. A coarctação diminuiu a fosforilação da AKT e o tratamento com DIZE não foi capaz de alterá-la. Não foram encontradas alterações na expressão das proteínas ECA 2, ERK1/2 total e fosforilada, AKT total, mTOR, GATA-4, SOD e catalase. Tais resultados mostram que o tratamento crônico com DIZE apresenta efeitos cardioprotetores contra a disfunção cardíaca induzida pela sobrecarga pressórica através da diminuição da hipertrofia ventricular esquerda, sem mudanças na expressão de ECA 2, ERK1/2, AKT, mTOR, GATA-4, SOD e catalase. Portanto, o DIZE possui importante potencial terapêutico frente a doenças cardiovasculares.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/3035
Date12 February 2014
CreatorsMacedo, Larissa Matuda
ContributorsCastro, Carlos Henrique de, Colugnati, Diego Basile
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Biologia (ICB), UFG, Brasil, Instituto de Ciências Biológicas - ICB (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightsinfo:eu-repo/semantics/openAccess
Relation6883982777473437920, 600, 600, 600, 600, -3872772117827373404, -2321034096481322512, -961409807440757778, AKERS, W. S. et al. Renin-angiotensin system and sympathetic nervous system in cardiac pressure-overload hypertrophy. Am J Physiol Heart Circ Physiol, v. 279, n. 6, p. H2797–806, 2000. ALGHAMRI, M. S. et al. Enhanced angiotensin II-induced cardiac and aortic remodeling in ACE2 knockout mice. J Cardiovasc Pharmacol Ther, v. 18, n. 2, p. 138–151, 2013. AMBUHL, P.; FELIX, D.; KHOSLA, M. C. [7-D-ALA]-angiotensin-(1-7): selective antagonism of angiotensin-(1-7) in the rat paraventricular nucleus. Brain Res Bull, v. 35, n. 4, p. 289–291, 1994. AZAKIE, A.; FINEMAN, J. R.; HE, Y. Myocardial transcription factors are modulated during pathologic cardiac hypertrophy in vivo. The Journal of Thoracic and Cardiovascular Surgery, v. 132, p. 1262–1271, 2006. BAKER, K. M. et al. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol, v. 259, n. 2 Pt 2, p. H324–32, 1990. BARAUNA, V. G. et al. Shear stress-induced Ang II AT1 receptor activation: Gprotein dependent and independent mechanisms. Biochem Biophys Res Commun, v. 434, n. 3, p. 647–652, 2013. cardiac hypertrophy. Int J Biochem Cell Biol, v. 40, n. 10, p. 2023–2039, 2008. BENDALL, J. K. et al. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation, v. 105, n. 3, p. 293– 296, 2002. BENTER, I. F. et al. Angiotensin-(1-7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. Am J Physiol Heart Circ Physiol, v. 290, n. 2, p. H684–91, 2006. BERNARDO, B. C. et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther, v. 128, n. 1, p. 191–227, 2010. BODIGA, S. et al. Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit. Cardiovasc Res, v. 91, n. 1, p. 151–161, 2011. BOOKOUT, A. L. et al. High-throughput real-time quantitative reverse transcription PCR. Current protocols in molecular biology / edited by Frederick M. Ausubel ... [et al.], v. Chapter 15, p. Unit 15.8, 2006. BOTELHO-SANTOS, G. A. et al. Expression of an angiotensin-(1-7)-producing fusion protein in rats induced marked changes in regional vascular resistance. Am J Physiol Heart Circ Physiol, v. 292, n. 5, p. H2485–90, 2007. BOURAJJAJ, M. et al. NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. The Journal of Biological Chemistry, v. 283, p. 22295–22303, 2008. BUENO, O. F. et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. the The European Molecular Biology Organization Journal, v. 19, p. 6341–50, 2000. BUENO, O. F. et al. Impaired cardiac hypertrophic response in Calcineurin Abeta deficient mice. Proceedings of the National Academy of Sciences of the United States of America, v. 99, p. 4586–4591, 2002. BYRNE, J. A. et al. Contrasting roles of NADPH oxidase isoforms in pressureoverload versus angiotensin II-induced cardiac hypertrophy. Circ Res, v. 93, n. 9, p. 802–805, 2003. CAMPAGNOLE-SANTOS, M. J. et al. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Physiol, v. 257, n. 1 Pt 2, p. H324–9, 1989. CAMPBELL, D. J. et al. Evidence against a major role for angiotensin converting enzyme-related carboxypeptidase (ACE2) in angiotensin peptide metabolism in the human coronary irculation. J Hypertens, v. 22, n. 10, p. 1971–1976, 2004. CAMPBELL, D. J. et al. Activity assays and immunoassays for plasma renin and prorenin: information provided and precautions necessary for accurate measurement. Clinical …, v. 55, n. 5, p. 867–77, maio 2009. CANTLEY, L. C. The phosphoinositide 3-kinase pathway. Science, v. 296, n. 5573, p. 1655–1657, 2002. CARTWRIGHT, E. J. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci, v. 54, n. 8, p. 691–698, 2011. CASTRO, C. H. et al. Evidence for a functional interaction of the angiotensin-(1-7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension, v. 46, n. 4, p. 937–942, 2005. CASTRO, C. H. et al. Effects of genetic deletion of angiotensin-(1-7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sci, v. 80, n. 3, p. 264–268, 2006. CHAPPELL, M. C. et al. Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension, v. 31, n. 1 Pt 2, p. 362–367, 1998. CHAPPELL, M. C. et al. Release of angiotensin-(1-7) from the rat hindlimb: influence of angiotensin-converting enzyme inhibition. Hypertension, v. 35, n. 1 Pt 2, p. 348– 352, 2000. CHEN, Z. et al. MAP kinases. Chem Rev, v. 101, n. 8, p. 2449–2476, 2001. CRACKOWER, M. A. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, v. 417, n. 6891, p. 822–828, 2002a. CRACKOWER, M. A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell, v. 110, n. 6, p. 737–749, 2002b. DEBOSCH, B. et al. Akt1 is required for physiological cardiac growth. Circulation, v. 113, p. 2097–2104, 2006. DER SARKISSIAN, S. et al. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension, v. 51, n. 3, p. 712–718, 2008. DHALLA, N. S. et al. Cardiac remodeling and subcellular defects in heart failure due to myocardial infarction and aging. Heart Fail Rev, v. 17, n. 4-5, p. 671–681, 2012. DIAS-PEIXOTO, M. F. et al. Molecular mechanisms involved in the angiotensin-(17)/Mas signaling pathway in cardiomyocytes. Hypertension, v. 52, n. 3, p. 542–548, 2008. DINIZ, G. P.; CARNEIRO-RAMOS, M. S.; BARRETO-CHAVES, M. L. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol, v. 104, n. 6, p. 653–667, 2009. DONG, B. et al. Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J Am Coll Cardiol, v. 59, n. 8, p. 739–747, 2012. DONOGHUE, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, v. 87, n. 5, p. E1–9, 2000. DORN, G. W.; FORCE, T. Protein kinase cascades in the regulation of cardiac hypertrophy. Journal of Clinical Investigation, v. 115, p. 527–537, 2005. FEOLDE, E.; VIGNE, P.; FRELIN, C. Angiotensin AT1 receptors mediate a positive inotropic effect of angiotensin II in guinea pig atria. Eur J Pharmacol, v. 245, n. 1, p. 63–66, 1993. FERRARIO, C. M. et al. Counterregulatory actions of angiotensin-(1-7). Hypertension, v. 30, n. 3 Pt 2, p. 535–541, 1997. FERREIRA, A. J. et al. Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1-7) analogue AVE 0991. Life Sci, v. 81, n. 11, p. 916–923, 2007. FERREIRA, A. J. et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med, v. 179, n. 11, p. 1048–1054, 2009. FERREIRA, A. J. et al. Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart. Ther Adv Cardiovasc Dis, v. 4, n. 2, p. 83–96, 2010. FERREIRA, A. J. et al. Angiotensin-converting enzyme 2 activation protects against ypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol, v. 96, n. 3, p. 287–294, 2011. FERREIRA, A. J.; SANTOS, R. A.; ALMEIDA, A. P. Angiotensin-(1-7) improves the post-ischemic function in isolated perfused rat hearts. Braz J Med Biol Res, v. 35, n. 9, p. 1083–1090, 2002. FOUREAUX, G. et al. Antiglaucomatous effects of the activation of intrinsic Angiotensin- converting enzyme 2. Investigative ophthalmology visual science, v. 54, p. 4296–306, 2013. FRAGA-SILVA, R. A. et al. ACE2 activation promotes antithrombotic activity. Mol Med, v. 16, n. 5-6, p. 210–215, 2010. FREY, N.; OLSON, E. N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol, v. 65, p. 45–79, 2003. GARDNER, D. G. Natriuretic peptides: markers or modulators of cardiac hypertrophy? Trends Endocrinol Metab, v. 14, n. 9, p. 411–416, 2003. GARDNER, D. G. et al. Molecular biology of the natriuretic peptide system: implications for physiology and hypertension. Hypertension, v. 49, n. 3, p. 419–426, 2007. GEISZT, M.; LETO, T. L. The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem, v. 279, n. 50, p. 51715–51718, 2004. GJYMISHKA, A. et al. Diminazene aceturate is an ACE2 activator and a novel antihypertensive drug. FASEB J, v. 24, p. 1032.3, 2010. GOMES, E. R. et al. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3’,5'-cyclic monophosphate-dependent pathway. Hypertension, v. 55, n. 1, p. 153–160, 2010. GROBE, J. L. et al. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol, v. 292, n. 2, p. H736–42, 2007. GROSSMAN, W.; JONES, D.; MCLAURIN, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest, v. 56, n. 1, p. 56–64, 1975. GUPTA, D; SHENOY, V; KATOVICH, M; RAIZADA, M. Effect of Dize, An Ace2 Activator on Cardiopulmonary Fibrosis and Apoptosis. Critical Care Medicine, v. 40, n. 12, p. 203, 2012. HABER, P. K. et al. Angiotensin-Converting Enzyme 2-Independent Action of Presumed Angiotensin-Converting Enzyme 2 Activators: Studies In Vivo, Ex Vivo, and In Vitro. Hypertension, 20 jan. 2014. HAUTALA, N. et al. Pressure overload increases GATA4 binding activity via endothelin-1. Circulation, v. 103, n. 5, p. 730–735, 2001. HEINEKE, J.; MOLKENTIN, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, v. 7, p. 589–600, 2006. HEITSCH, H. et al. Angiotensin-(1-7)-Stimulated Nitric Oxide and Superoxide Release From Endothelial Cells. Hypertension, v. 37, n. 1, p. 72–76, 2001. HERNANDEZ PRADA, J. A. et al. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension, v. 51, n. 5, p. 1312–1317, 2008. HUENTELMAN, M. J. et al. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol, v. 90, n. 5, p. 783–790, 2005. IZUMO, S. et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormoneinduced signals. J Clin Invest, v. 79, n. 3, p. 970–977, 1987. JANKOWSKI, V. et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arteriosclerosis, thrombosis, and vascular biology, v. 27, p. 297–302, 2007. KASSIRI, Z. et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail, v. 2, n. 5, p. 446–455, 2009. KEHAT, I.; MOLKENTIN, J. D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, v. 122, p. 2727–2735, 2010. KINDO, M. et al. Pressure overload-induced mild cardiac hypertrophy reduces left ventricular transmural differences in mitochondrial respiratory chain activity and increases oxidative stress. Frontiers in physiology, v. 3, p. 332, 2012. KONDO, T. et al. Diphosphorylated but not monophosphorylated myosin II regulatory light chain localizes to the midzone without its heavy chain during cytokinesis. Biochem Biophys Res Commun, v. 417, n. 2, p. 686–691, 2012. KULEMINA, L. V; OSTROV, D. A. Prediction of off-target effects on Angiotensinconverting enzyme 2. Journal of biomolecular screening the official journal of the Society for Biomolecular Screening, v. 16, p. 878–885, 2011. LAL, H. et al. Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta1-integrin and focal adhesion kinase. J Mol Cell Cardiol, v. 43, n. 2, p. 137–147, 2007. LAUTNER, R. Q. et al. Discovery and characterization of alamandine: a novel component of the Renin-Angiotensin system. Circulation research, v. 112, p. 1104– 11, 2013. LEVY, D. et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med, v. 322, n. 22, p. 1561–1566, 1990. LIMA, A. M. et al. Activation of angiotensin-converting enzyme 2/angiotensin-(17)/Mas axis attenuates the cardiac reactivity to acute emotional stress. American journal of physiology. Heart and circulatory physiology, v. 305, n. 7, p. H1057– 67, 1 out. 2013. LIU, H. et al. Angiotensin(1-7) attenuates left ventricular dysfunction and myocardial apoptosis on rat model of adriamycin-induced dilated cardiomyopathy. Zhonghua Xin Xue Guan Bing Za Zhi, v. 40, n. 3, p. 219–224, 2012. LIU, J. C. et al. The inhibitory effect of trilinolein on norepinephrine-induced betamyosin heavy chain promoter activity, reactive oxygen species generation, and extracellular signal-regulated kinase phosphorylation in neonatal rat cardiomyocytes. J Biomed Sci, v. 11, n. 1, p. 11–18, 2004. LO, J. et al. Angiotensin-converting enzyme 2 antagonizes angiotensin II-induced pressor response and NADPH oxidase activation in Wistar-Kyoto rats and spontaneously hypertensive rats. Exp Physiol, v. 98, n. 1, p. 109–122, 2013. LOOT, A. E. et al. Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation, v. 105, n. 13, p. 1548–1550, 2002. LORELL, B. H.; CARABELLO, B. A. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation, v. 102, n. 4, p. 470–479, 2000. LOVREN, F. et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol, v. 295, n. 4, p. H1377–84, 2008. LOWES, B. D. et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest, v. 100, n. 9, p. 2315–2324, 1997. MABLY, J. D.; LIEW, C. C. Factors involved in cardiogenesis and the regulation of cardiac-specific gene expression. Circulation Research, v. 79, p. 4–13, 1996. MARIA, M. L. A.; FERREIRA, D. A. J. Avaliação dos Efeitos do Ativador da Enzima Conversora de Angiotensina 2 (DIZE) na Pressão Arterial de ratos. Belo Horizonte: Universidade Federal de Minas Gerais, 2011. MASAKI, H. et al. Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest, v. 101, n. 3, p. 527–535, 1998. MCCOLLUM, L. T.; GALLAGHER, P. E.; ANN TALLANT, E. Angiotensin-(1-7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1. Am J Physiol Heart Circ Physiol, v. 302, n. 3, p. H801–10, 2012. MCMULLEN, J. R. et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, v. 100, p. 12355–12360, 2003. MCMURRAY, J. et al. Evidence of oxidative stress in chronic heart failure in humans. European Heart Journal, v. 14, p. 1493–1498, 1993. MECCA, A. P. et al. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol, v. 96, n. 10, p. 1084–1096, 2011. MEHTA, P. K.; GRIENDLING, K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol, v. 292, n. 1, p. C82–97, 2007. MERCURE, C. et al. Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res, v. 103, n. 11, p. 1319–1326, 2008. MEZZANO, S. A.; RUIZ-ORTEGA, M.; EGIDO, J. Angiotensin II and renal fibrosis. Hypertension, v. 38, n. 3 Pt 2, p. 635–638, 2001. MOLKENTIN, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, v. 93, p. 215–228, 1998. MURDOCH, C. E. et al. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res, v. 71, n. 2, p. 208–215, 2006. NAG, A. C. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios, v. 28, n. 109, p. 41–61, 1980. NISHIKIMI, T.; MAEDA, N.; MATSUOKA, H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res, v. 69, n. 2, p. 318–328, 2006. OUDIT, G. Y. et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol, v. 37, n. 2, p. 449–471, 2004. OUDIT, G. Y.; KASSIRI, Z. Role of PI3 kinase gamma in excitation-contraction coupling and heart disease. Cardiovasc Hematol Disord Drug Targets, v. 7, n. 4, p. 295–304, 2007. OUDOT, A. et al. Pharmacological concentration of angiotensin-(1-7) activates NADPH oxidase after ischemia-reperfusion in rat heart through AT1 receptor stimulation. Regul Pept, v. 127, n. 1-3, p. 101–110, 2005. PATEL, V. B. et al. Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice. Hypertension, v. 59, n. 6, p. 1195– 1203, 2012. PHUNG, T. L. et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell, v. 10, n. 2, p. 159–170, 2006. PIKKARAINEN, S. et al. GATA-4 is a nuclear mediator of mechanical stretchactivated hypertrophic program. The Journal of Biological Chemistry, v. 278, p. 23807–23816, 2003. PIKKARAINEN, S. et al. GATA transcription factors in the developing and adult heart.Cardiovascular Research, 2004. PLUIM, B. M. et al. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation, v. 101, n. 3, p. 336–344, 2000. POLIZIO, A. H. et al. Angiotensin-(1-7) blocks the angiotensin II-stimulated superoxide production. Pharmacol Res, v. 56, n. 1, p. 86–90, 2007. QI, Y. et al. Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension, v. 62, p. 746–52, 2013. RENTZSCH, B. et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension, v. 52, n. 5, p. 967–973, 2008. RICE, G. I. et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J, v. 383, n. Pt 1, p. 45–51, 2004. RIGATTO, K. et al. Diminazene aceturate improves autonomic modulation in pulmonary hypertension. Eur J Pharmacol, v. 713, n. 1-3, p. 89–93, 2013. RUPPERT, C. et al. Interference with ERKThr188 phosphorylation impairs pathological but not physiological cardiac hypertrophy. PNAS, v. 110, n. 18, p. 7440– 7445, 2013. RUWHOF, C.; VAN DER LAARSE, A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res, v. 47, n. 1, p. 23–37, 2000. SABRI, A.; HUGHIE, H. H.; LUCCHESI, P. A. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxidants redox signaling, v. 5, p. 731–740, 2003. SAFI-JR., J. Hipertrofia miocárdica e biologia molecular. HiperAtivo, v. 3, p. 154– 160, 1998. SAMPAIO, W. O. et al. Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension, v. 50, n. 6, p. 1093–1098, 2007. SAMPAIO, W. O.; NASCIMENTO, A. A.; SANTOS, R. A. Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats. Am J Physiol Heart Circ Physiol, v. 284, n. 6, p. H1985–94, 2003. SANTOS, R. A. et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension, v. 11, n. 2 Pt 2, p. I153–7, 1988. SANTOS, R. A. et al. Characterization of a new angiotensin antagonist selective for angiotensin-(1-7): evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Res Bull, v. 35, n. 4, p. 293–298, 1994. SANTOS, R. A. et al. Angiotensin-(1-7) is an endogenous ligand for the G proteincoupled receptor Mas. Proc Natl Acad Sci U S A, v. 100, n. 14, p. 8258–8263, 2003. SANTOS, R. A. et al. Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats. Physiol Genomics, v. 17, n. 3, p. 292–299, 2004. SANTOS, R. A. et al. Impairment of in vitro and in vivo heart function in angiotensin(1-7) receptor MAS knockout mice. Hypertension, v. 47, n. 5, p. 996–1002, 2006. SANTOS, R. A.; CAMPAGNOLE-SANTOS, M. J.; ANDRADE, S. P. Angiotensin-(17): an update. Regul Pept, v. 91, n. 1-3, p. 45–62, 2000. SARBASSOV, D. D.; ALI, S. M.; SABATINI, D. M. Growing roles for the mTOR pathway. Curr Opin Cell Biol, v. 17, n. 6, p. 596–603, 2005. SAVOIA, C. et al. Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J Hypertens, v. 24, n. 12, p. 2417–2422, 2006. SCHIAVONE, M. T. et al. Release of vasopressin from the rat hypothalamoneurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A, v. 85, n. 11, p. 4095–4098, 1988. SHENOY, V. et al. The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med, v. 182, n. 8, p. 1065–1072, 2010. SHIOI, T. et al. The conserved phosphoinositide 3-kinase pathway determines heart size in ice. the The European Molecular Biology Organization Journal, v. 19, p. 2537–2548, 2000. SHIOI, T. et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol, v. 22, n. 8, p. 2799–2809, 2002. SHIOJIMA, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest, v. 115, n. 8, p. 2108–2118, 2005. SOONPAA, M. H. et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol, v. 271, n. 5 Pt 2, p. H2183–9, 1996. STANZIOLA, L.; GREENE, L. J.; SANTOS, R. A. Effect of chronic angiotensin converting enzyme inhibition on angiotensin I and bradykinin metabolism in rats. Am J Hypertens, v. 12, n. 10 Pt 1, p. 1021–1029, 1999. SWYNGHEDAUW, B. Molecular mechanisms of myocardial remodeling. Physiol Rev, v. 79, n. 1, p. 215–262, 1999. TAKIMOTO, E.; KASS, D. A. Role of Oxidative Stress in Cardiac Hypertrophy and Remodeling. Hypertension, v. 49, p. 241–248, 2007. TIPNIS, S. R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem, v. 275, n. 43, p. 33238–33243, 2000. TOKER, A.; CANTLEY, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature, v. 387, n. 6634, p. 673–676, 1997. TOUYZ, R. M. Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr Opin Nephrol Hypertens, v. 14, n. 2, p. 125–131, 2005. TOUYZ, R. M.; SCHIFFRIN, E. L. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D- dependent NAD(P)H oxidase-sensitive pathways. J Hypertens, v. 19, n. 7, p. 1245–1254, 2001. VICKERS, C. et al. Hydrolysis of biological peptides by human angiotensinconverting enzyme-related carboxypeptidase. J Biol Chem, v. 277, n. 17, p. 14838– 14843, 2002. WANG, L. et al. Chronic administration of angiotensin-(1-7) attenuates pressureoverload left ventricular hypertrophy and fibrosis in rats. Di 1 jun yi da xue xue bao Academic journal of the first medical college of PLA, v. 25, p. 481–487, 2005. WHO, W. H. O. Cardiovascular Diseases (CVDs). 2013. WILKINS, B. J. et al. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Molecular and Cellular Biology, v. 22, p. 7603–7613, 2002. WULLSCHLEGER, S.; LOEWITH, R.; HALL, M. N. TOR signaling in growth and metabolism. Cell, v. 124, n. 3, p. 471–484, 2006. YAMAMOTO, K. et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension, v. 47, n. 4, p. 718–726, 2006. YANG, R.; SMOLDERS, I.; DUPONT, A. G. Blood pressure and renal hemodynamic effects of angiotensin fragments. Hypertension research official journal of the Japanese Society of Hypertension, v. 34, p. 674–683, 2011. ZAGO, A. S.; ZANESCO, A. Nitric oxide, cardiovascular disease and physical exercise. Arq Bras Cardiol, v. 87, n. 6, p. e264–70, 2006. ZARAIN-HERZBERG, A.; FRAGOSO-MEDINA, J.; ESTRADA-AVILES, R. Calciumregulated transcriptional pathways in the normal and pathologic heart. IUBMB Life, v. 63, n. 10, p. 847–855, 2011. ZHANG, C. et al. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ Res, v. 92, n. 3, p. 322–329, 2003. ZHAO, Y. X. et al. ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Hum Gene Ther, v. 21, n. 11, p. 1545–1554, 2010. ZHU, Y. C. et al. Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and cardiac remodelling. Clin Exp Pharmacol Physiol, v. 30, n. 12, p. 911–918, 2003.

Page generated in 0.0098 seconds