Return to search

Numerical and experimental anlysis of a high lifting airfoil at low Reynolds number flows

Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2017. / Made available in DSpace on 2018-01-30T03:20:50Z (GMT). No. of bitstreams: 1
349588.pdf: 4625385 bytes, checksum: dc1dca352ea0ffce13b4320754881721 (MD5)
Previous issue date: 2017 / A análise e desenvolvimento de perfis aerodinâmicos para operação em baixas velocidades têm ganhado importância recentemente devido à crescente utilização de VANTs (Veículos Aéreos Não Tripulados) e turbinas eólicas. Nessas aplicações, o número de Reynolds característico para o escoamento sobre a asa pode ser inferior a 3·105 e o escoamento pode sofrer separação na região laminar da camada limite, formando o que se conhece por bolhas de separação laminar. O principal objetivo deste trabalho é avaliar o comportamento das bolhas de separação laminar em um perfil aerodinâmico de alta sustentação por meio de simulações numéricas suportadas por medições em túnel de vento. Inicialmente, apresenta-se uma comparação entre os resultados previstos por quatro modelos de turbulência, sendo dois para escoamentos totalmente turbulentos (Spalart-Allmaras e SST k-?), e dois para escoamentos de transição (?-Re? e k-kL-?), usando o software FLUENT. Os modelos foram aplicados a um perfil Eppler 387, que foi escolhido por apresentar dados experimentais disponíveis e medidos em diferentes laboratórios, e a um perfil Selig 1223, por ser um perfil de alta sustentação e utilizado em aeronaves de baixa velocidade. Os resultados indicaram que, embora seja possível prever a evolução do coeficiente de sustentação para baixos ângulos de ataque usando qualquer um dos modelos, apenas os modelos de transição foram capazes de prever o surgimento da bolha de separação laminar, resultando em grandes diferenças no coeficiente de sustentação próximo ao ângulo de estol. Essas diferenças se tornaram particularmente relevantes para o perfil Selig 1223, que apresentou um ganho na sustentação máxima de 20 % movendo do Reynolds de 1·105 para 2·105. Em relação ao coeficiente de arrasto, os modelos de transição apresentaram uma diferença média de 10 % em relação às referências, enquanto que nos outros, essa diferença chegou a 40 % em alguns ângulos. Na sequência do trabalho, fabricou-se um perfil Selig 1223 instrumentado com tomadas de pressão em sua superfície, para medição do coeficiente de pressão ao longo de sua corda. Para visualizar o local da bolha de separação laminar, foi utilizado um óleo pigmentado. Os resultados mostraram boa concordância na previsão do coeficiente de pressão utilizando os modelos de transição e a observação com filme de óleo comprovou a posição e extensão da bolha de separação. Concluiu-se que a separação do escoamento na camada limite laminar foi a principal causa de estol no número de Reynolds de 1·105. Finalmente, estudou-se a possibilidade de eliminação da separação em regime laminar através da adição de um tubo de carbono à frente do bordo de ataque. Experimentalmente, verificou-se que, com a aplicação dessa técnica, o ângulo de estol em número de Reynolds de 1·105 aumentou de 10° para 20°. A técnica da visualização com óleo mostrou que a bolha é eliminada com o emprego do gerador de turbulência. Os modelos de transição forneceram boa comparação com as medições, sendo recomendado o seu uso nessas aplicações. / Abstract : The development and analysis of airfoils for low-speed operations have recently become important because of their vast use in UAVs (Unmanned Aerial Vehicle) and wind turbines. In these applications, the characteristic Reynolds number for the flow over the wing may be as low as 3·105 and separation may occur in the laminar region of the boundary layer, forming the so-called laminar separation bubbles (LSB). The main objective of this work is to evaluate the behavior of the LSBs in a high lifting airfoil by means of numerical simulations supported by measurements in wind tunnel. Primarily, a comparison of four turbulence models is given: two for fully-turbulent flows (Spalart-Allmaras e SST k-?), and two for transitional flows (?-Re? e k-kL-?), using FLUENT software. The models were initially used in an Eppler 387 airfoil, which was chosen due to the availability of experimental data obtained in different laboratories, and then in a Selig 1223, because it is a high lifting airfoil and used in low-speed aircrafts. Results indicated that, although it is possible to predict the development of the lift coefficient for low angles of attack using anyone of the models, only the transition-sensitive models were capable of predicting the LSBs, which resulted in large differences of the lift coefficient close to the region of stall. These differences became relevant for the S1223 airfoil, which presented a maximum lift coefficient difference of 20 % when comparing the Reynolds number cases of 1·105 and 2·105. Regarding drag coefficient in comparison to the references, transition-sensitive models showed an average difference of 10 %. Fully-turbulent models achieved maximum difference of 40 %. Following the work, a Selig 1223 wing was manufactured with pressure tapping holes on the surface to measure the pressure coefficient over it chord. In order to visualize the location of the laminar separation bubble, a pigmented oil was used. Results reported good agreement in predicting the pressure coefficient using the transition-sensitive models and the observations with oil film proved the position and extension of the LSBs. It was concluded that the separation in the laminar boundary layer was the main cause of stall in the Reynolds number of 1·105. Finally, it was considered the possibility of suppressing the laminar separation by installing a carbon fiber tube in front of the leading edge. Experimentally, it was verified that this technique provided an increase in the angle of stall from 10° to 20° at a Reynold number of 1·105. The oil visualization technique showed that the bubble is suppressed with the use of the turbulence generator. Altogether, transition-sensitive models provided results in better agreement with the experimental data. Their use is recommended in these applications.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/182906
Date January 2017
CreatorsHübbe, Guilherme Bez Batti
ContributorsUniversidade Federal de Santa Catarina, Oliveira, Amir Antônio Martins de
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format172 p.| il., gráfs., tabs.
Sourcereponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds