Modeling based on a reparameterized Birnbaum-Saunders distribution for analysis of survival data / Modelagem baseada na distribuição Birnbaum-Saunders reparametrizada para análise de dados de sobrevivência

Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-04-24T18:48:10Z
No. of bitstreams: 1
TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-25T18:50:15Z (GMT) No. of bitstreams: 1
TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-25T18:50:23Z (GMT) No. of bitstreams: 1
TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5) / Made available in DSpace on 2017-04-25T18:59:25Z (GMT). No. of bitstreams: 1
TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5)
Previous issue date: 2017-01-09 / Não recebi financiamento / In this thesis we propose models based on a reparameterized Birnbaum-Saunder (BS) distribution
introduced by Santos-Neto et al. (2012) and Santos-Neto et al. (2014), to analyze survival data.
Initially we introduce the Birnbaum-Saunders frailty model where we analyze the cases (i) with
(ii) without covariates. Survival models with frailty are used when further information is nonavailable
to explain the occurrence time of a medical event. The random effect is the “frailty”,
which is introduced on the baseline hazard rate to control the unobservable heterogeneity of
the patients. We use the maximum likelihood method to estimate the model parameters. We
evaluate the performance of the estimators under different percentage of censured observations
by a Monte Carlo study. Furthermore, we introduce a Birnbaum-Saunders regression frailty
model where the maximum likelihood estimation of the model parameters with censored data
as well as influence diagnostics for the new regression model are investigated. In the following
we propose a cure rate Birnbaum-Saunders frailty model. An important advantage of this
proposed model is the possibility to jointly consider the heterogeneity among patients by their
frailties and the presence of a cured fraction of them. We consider likelihood-based methods to
estimate the model parameters and to derive influence diagnostics for the model. In addition,
we introduce a bivariate Birnbaum-Saunders distribution based on a parameterization of the
Birnbaum-Saunders which has the mean as one of its parameters. We discuss the maximum
likelihood estimation of the model parameters and show that these estimators can be obtained
by solving non-linear equations. We then derive a regression model based on the proposed
bivariate Birnbaum-Saunders distribution, which permits us to model data in their original
scale. A simulation study is carried out to evaluate the performance of the maximum likelihood
estimators. Finally, examples with real-data are performed to illustrate all the models proposed
here. / Nesta tese propomos modelos baseados na distribuição Birnbaum-Saunders reparametrizada
introduzida por Santos-Neto et al. (2012) e Santos-Neto et al. (2014), para análise dados de
sobrevivência. Incialmente propomos o modelo de fragilidade Birnbaum-Saunders sem e com
covariáveis observáveis. O modelo de fragilidade é caracterizado pela utilização de um efeito
aleatório, ou seja, de uma variável aleatória não observável, que representa as informações que
não podem ou não foram observadas tais como fatores ambientais ou genéticos, como também,
informações que, por algum motivo, não foram consideradas no planejamento do estudo. O
efeito aleatório (a “fragilidade”) é introduzido na função de risco de base para controlar a
heterogeneidade não observável. Usamos o método de máxima verossimilhança para estimar os
parâmetros do modelo. Avaliamos o desempenho dos estimadores sob diferentes percentuais
de censura via estudo de simulações de Monte Carlo. Considerando variáveis regressoras,
derivamos medidas de diagnóstico de influência. Os métodos de diagnóstico têm sido ferramentas
importantes na análise de regressão para detectar anomalias, tais como quebra das pressuposições
nos erros, presença de outliers e observações influentes. Em seguida propomos o modelo de
fração de cura com fragilidade Birnbaum-Saunders. Os modelos para dados de sobrevivência
com proporção de curados (também conhecidos como modelos de taxa de cura ou modelos de
sobrevivência com longa duração) têm sido amplamente estudados. Uma vantagem importante
do modelo proposto é a possibilidade de considerar conjuntamente a heterogeneidade entre
os pacientes por suas fragilidades e a presença de uma fração curada. As estimativas dos
parâmetros do modelo foram obtidas via máxima verossimilhança, medidas de influência e
diagnóstico foram desenvolvidas para o modelo proposto. Por fim, avaliamos a distribuição
bivariada Birnbaum-Saunders baseada na média, como também introduzimos um modelo de
regressão para o modelo proposto. Utilizamos os métodos de máxima verossimilhança e método
dos momentos modificados, para estimar os parâmetros do modelo. Avaliamos o desempenho
dos estimadores via estudo de simulações de Monte Carlo. Aplicações a conjuntos de dados
reais ilustram as potencialidades dos modelos abordados.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/8678
Date09 January 2017
CreatorsLeão, Jeremias da Silva
ContributorsTomazella, Vera Lucia Damasceno, Sanchez, Victor Eliseo Leiva
PublisherUniversidade Federal de São Carlos, Câmpus São Carlos, Programa de Pós-graduação em Estatística, UFSCar
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds