Orientador: Ronei Jesus Popi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-18T17:27:36Z (GMT). No. of bitstreams: 1
Maretto_DaniloAlthmann_D.pdf: 2617064 bytes, checksum: 1ebea2b6ab73ef552155cd9b79b6fd1b (MD5)
Previous issue date: 2011 / Resumo: O objetivo desta tese de doutorado foi de utilizar o algoritmo Máquinas de Vetores de Suporte (SVM) em problemas de classificação e calibração, onde algoritmos mais tradicionais (SIMCA e PLS, respectivamente) encontram problemas. Foram realizadas quatro aplicações utilizando dados de espectroscopia no infravermelho. Na primeira o SVM se mostrou ser uma ferramenta mais indicada para a determinação de Carbono e Nitrogênio em solo por NIR, quando estes elementos estão em solos sem que se saiba se há ou não a presença do mineral gipsita, obtendo concentrações desses elementos com erros consideravelmente menores do que a previsão feita pelo PLS. Na determinação da concentração de um mineral em polímero por NIR, que foi a segunda aplicação, o PLS conseguiu previsões com erros aceitáveis, entretanto, através da análise do teste F e o gráfico de erros absolutos das previsões, foi possível concluir que o modelo SVM conseguiu chegar a um modelo mais ajustado. Na terceira aplicação, que consistiu na classificação de bactérias quanto às condições de crescimento (temperaturas 30 ou 40°C e na presença ou ausência de fosfato) por MIR, o SIMCA não foi capaz de classificar corretamente a grande maioria das amostras enquanto o SVM produziu apenas uma previsão errada. E por fim, na última aplicação, que foi a diferenciação de nódulos cirróticos e de hepatocarcinoma por microespectroscopia MIR, a taxa das previsões corretas para os conjuntos de validação do SVM foram maiores do que do SIMCA. Nas quatro aplicações o SVM produziu resultados melhores do que o SIMCA e o PLS, mostrando que pode ser uma alternativa aos métodos mais tradicionais de classificação e calibração multivariada / Abstract: The objective of this thesis was to use the algorithm Support Vector Machines (SVM) in problems of classification and calibration, where more traditional algorithms (SIMCA and PLS, respectively) present problems. Four applications were developed using data for infrared spectra. In the first one, the SVM proved to be a most suitable tool for determination of carbon and nitrogen in soil by NIR, when these elements are in soils without knowledge whether or not the presence of the gypsum mineral, obtaining concentrations of these elements with errors considerably smaller than the estimated by the PLS. In the determination of the concentration of a mineral in a polymer by NIR, which was the second application, the PLS presented predictions with acceptable errors, however, by examining the F test and observing absolute errors of predictions, it was concluded that the SVM was able to reach a more adjusted model. In the third application, classification of bacteria on the different growth conditions (temperatures 30 or 40 ° C and in the presence or absence of phosphate) by MIR, the SIMCA was not able to correctly classify the majority of the samples while the SVM produced only one false prediction. Finally, in the last application, which was the differentiation of cirrhotic nodules and Hepatocellular carcinoma by infrared microspectroscopy, the rate of correct predictions for the validation of sets of SVM was higher than the SIMCA. In the four applications SVM produced better results than SIMCA and PLS, showing that it can be an alternative to the traditional algorithms for classification and multivariate calibration / Doutorado / Quimica Analitica / Doutor em Ciências
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/249287 |
Date | 18 August 2018 |
Creators | Maretto, Danilo Althmann |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Poppi, Ronei Jesus, 1961-, Popi, Ronei Jesus, Borin, Alessandra, Valderrama, Patricia, Pessine, Francisco Benedito Teixeira, Rowedder, Jarbas José Rodrigues |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Química, Programa de Pós-Graduação em Ciências |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 113 f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds