Orientadores: Francisco Odair Vieira de Paiva, Augusto César Ponce / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T10:14:29Z (GMT). No. of bitstreams: 1
Presoto_AdilsonEduardo_D.pdf: 2067267 bytes, checksum: 79c3ffe06a88b7cba190920dcf512036 (MD5)
Previous issue date: 2011 / Resumo: No trabalho precursor de Brezis, Marcus e Ponce [15], estudou-se problemas semilineares elípticos com uma não linearidade não decrescente, contínua e dependendo apenas da variável dependente e com medidas como dados. Os autores estavam particularmente interessados no caso em que a equação não possuía solução. Numa das técnicas estudadas, eles aproximaram a medida por funções suaves através da convolução e, sob a condição adicional de convexidade da não linearidade, mostraram que as soluções correspondentes convergiam para a solução do mesmo problema com a maior medida menor do que ou igual a medida inicial tal que o problema tinha solução. O nosso objetivo é explorar profundamente este método. Ao invés de lidar com a convolução, consideramos sequências de medidas de Radon que convergem na topologia fraca-estrela e tais que o problema tem solução para cada termo. A pergunta que se põe é: as soluções convergem? Se sim, temos que o limite satisfaz a mesma equação com uma medida, em geral, distinta do limite-fraco, logo desejamos também determinar esta medida. Quando temos uma não linearidade, como descrita no parágrafo acima, as respostas têm um alto grau de variação, conforme os exemplos dados nos trabalhos de Ponce, e são inconclusivas. A proposta da tese é estudar a convergência dessas soluções para equações e sistemas semilineares elípticos com a não linearidade sendo do tipo exponencial. No caso em que temos a equação semilinear no plano, as soluções convergem para a solução do mesmo problema com uma medida que depende apenas do limite-fraco da sequência. Também, vemos que em dimensões superiores essas asserções não se verificam mais. Por fim, o sistema que aplicamos a técnica acima é o Sistema de Chern-Simons, surgido na física teórica e que representa o modelo de Chern-Simons Abeliano relativístico envolvendo duas partículas Higgs e dois campos calibrados / Abstract: In the pioneering work of Brezis, Marcus and Ponce [15], the authors studied elliptic semilinear problems with a continuous nondecreasing nonlinearity which vanishes at origin and depends only on dependent variable, and with measures as inicial data. They were particularly interested in the case which the equation does not have a solution. One of the techniques discussed was the approach of the measure by smooth functions via convolution. Under the additional condition of convexity, they showed that the corresponding solutions converge to the solution for the same problem with the largest measure less than inicial datum such that the problem admits a solution. Our aim is to explore deeply this method. Instead of dealing with the convolution, we consider sequences of Radon measures which converge in weak-star topology and such that the problem has solution for each term. The question posted is: the solutions converge? If yes, the limit solves the same problem with, in general distinct from the weak limit, another measure, thus, we also wish to determine this measure. The purpose of the thesis is to study the convergence of solutions for equations and systems with exponential nonlinearity. If we have the equation semilinear on the plane, the solutions converge to a solution for the same problem with a measure which depends only on weak limit of the sequence. We also see that in upper dimensions the results are no longer assured. In the end, the system concerned is the Chern-Simons System that comes from theoretical physics and it represents a relativistic Abelian Chern- Simons model with two Higgs particles and two gauge fields / Doutorado / Matematica / Doutor em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307132 |
Date | 19 August 2018 |
Creators | Presoto, Adilson Eduardo, 1983- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Ponce, Augusto Cesar, Paiva, Francisco Odair Vieira de, 1975-, Lopes, Orlando Francisco, Ferreira, Lucas Catão de Freitas, O, Joao Marcos Bezerra do, Medeiros, Everaldo Souto de |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 103 p., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds