Made available in DSpace on 2016-03-15T19:37:52Z (GMT). No. of bitstreams: 1
Danilo Souza da Cunha.pdf: 1082171 bytes, checksum: 4d2c64017c5641baf212b0fe377da373 (MD5)
Previous issue date: 2013-10-23 / Fundo Mackenzie de Pesquisa / E-commerce has been growing rapidly over the past years. Various products, services, and information are constantly offered to millions of internet users. Defining an adequate strategy to offer a product to a customer is the main goal of a recommender system. To do so, the items to be offered have to take into account the interests of each customer. This association of items is a data mining task, more specifically a task called association rule mining. This dissertation investigated the use of bioinspired algorithms, particularly evolutionary and im-mune algorithms, to build associations among items of a database. Three sets of experiments were performed: an investigation into the influence of different selection and crossover mech-anisms in an evolutionary algorithm for association rule mining; the use of a probabilistic selection in the immune algorithm; and a comparison of the bioinspired algorithms with the standard deterministic algorithm called Apriori. The data bases for comparison were taken from real e-commerce applications. The results allowed the identification of a suitable combi-nation of the selection and crossover mechanisms for the evolutionary algorithm, and to iden-tify the strengths and weaknesses of all approaches when applied to real-world recommender systems. / O comércio eletrônico vem crescendo rapidamente ao longo dos últimos anos. Produtos, serviços e informações dos mais variados tipos são oferecidos todos os dias para milhares de usuários na Internet. Definir uma estratégia adequada para oferecer um produto a clientes é o objetivo dos sistemas de recomendação. Para isso leva em conta itens que podem ser ofertados considerando o interesse de cada cliente. Essa associação entre itens é uma tarefa que recai sobre a competência da mineração de dados, mais especificamente a área chamada de mineração de regras de associação. Esta dissertação investigou o uso de algoritmos bioinspirados, mais especificamente algoritmos evolutivos e imunológicos, a fim de construir associações entre os itens de uma base de dados. Foram feitos três estudos: a influência de diferentes mecanismos de seleseleção e cruzamento no algoritmo evolutivo; o uso de seleção probabilística no algoritmo imunológico; e a comparação dos algoritmos bioinspirados com o algoritmo determinístico clássico aplicado a essa tarefa, chamado de Apriori. As bases de dados para efeitos comparativos foram coletadas em lojas nacionais de comércio eletrônico. Os resulta-dos apresentados permitiram identificar uma combinação adequada dos mecanismos de sele-ção e cruzamento do algoritmo evolutivo, assim como identificar os pontos fortes e fracos dos algoritmos bioinspirados quando comparados ao algoritmo tradicional.
Identifer | oai:union.ndltd.org:IBICT/oai:tede.mackenzie.br:tede/1447 |
Date | 23 October 2013 |
Creators | Cunha, Danilo Souza da |
Contributors | Silva, Leandro Nunes de Castro, Omar, Nizam, Silva, Leandro Augusto da, Loula, Angelo Conrado, Senger, Hermes |
Publisher | Universidade Presbiteriana Mackenzie, Engenharia Elétrica, UPM, BR, Engenharia Elétrica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do Mackenzie, instname:Universidade Presbiteriana Mackenzie, instacron:MACKENZIE |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0192 seconds