Return to search

Self-adaptive QOS at communication and computation levels for many-core system-on-chip

Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2018-04-03T14:37:48Z
No. of bitstreams: 1
MARCELO_RUARO_TES.pdf: 4683751 bytes, checksum: 6eb242e44efbbffa6fa556ea81cdeace (MD5) / Approved for entry into archive by Tatiana Lopes (tatiana.lopes@pucrs.br) on 2018-04-13T17:30:40Z (GMT) No. of bitstreams: 1
MARCELO_RUARO_TES.pdf: 4683751 bytes, checksum: 6eb242e44efbbffa6fa556ea81cdeace (MD5) / Made available in DSpace on 2018-04-13T17:37:13Z (GMT). No. of bitstreams: 1
MARCELO_RUARO_TES.pdf: 4683751 bytes, checksum: 6eb242e44efbbffa6fa556ea81cdeace (MD5)
Previous issue date: 2018-03-16 / Sistemas multi-n?cleos intra-chip s?o o estado-da-arte em termos de poder computacional, alcan?ando de d?zias a milhares de elementos de processamentos (PE) em um ?nico circuito integrado. Sistemas multi-n?cleos de prop?sito geral assumem uma admiss?o din?mica de aplica??es, onde o conjunto de aplica??es n?o ? conhecido em tempo de projeto e as aplica??es podem iniciar sua execu??o a qualquer momento. Algumas aplica??es podem ter requisitos de tempo real, requisitando n?veis de qualidade de servi?o (QoS) do sistema. Devido ao alto grau de imprevisibilidade do uso dos recursos e o grande n?mero de componentes para se gerenciar, propriedades autoadaptativas tornam-se fundamentais para dar suporte a QoS em tempo de execu??o. A literatura fornece diversas propostas de QoS autoadaptativo, focado em recursos de comunica??o (ex., redes intra-chip), ou computa??o (ex., CPU). Contudo, para fornecer um suporte de QoS completo, ? fundamental uma autoconsci?ncia abrangente dos recursos do sistema, e assumir t?cnicas adaptativas que permitem agir em ambos os n?veis de comunica??o e computa??o para atender os requisitos das aplica??es. Para suprir essas demandas, essa Tese prop?e uma infraestrutura e t?cnicas de gerenciamento de QoS autoadaptativo, cobrindo ambos os n?veis de computa??o e comunica??o. No n?vel de computa??o, a infraestrutura para QoS consiste em um escalonador din?mico de tarefas de tempo real e um protocolo de migra??o de tarefas de baixo custo. Estas t?cnicas fornecem QoS de computa??o, devido ao gerenciamento da utiliza??o e aloca??o da CPU. A novidade do escalonador de tarefas ? o suporte a requisitos de tempo real din?micos, o que gera mais flexibilidade para as tarefas em explorar a CPU de acordo com uma carga de trabalho vari?vel. A novidade do protocolo de migra??o de tarefas ? o baixo custo no tempo de execu??o comparado a trabalhos do estado-da-arte. No n?vel de comunica??o, a t?cnica proposta ? um chaveamento por circuito (CS) baseado em redes definidas por software (SDN). O paradigma SDN para NoCs ? uma inova??o desta Tese, e ? alcan?ado atrav?s de uma arquitetura gen?rica de software e hardware. Para QoS de comunica??o, SDN ? usado para definir caminhos CS em tempo de execu??o. Essas infraestruturas de QoS s?o gerenciadas de uma forma integrada por um gerenciamento de QoS autoadaptativo, o qual segue o paradigma ODA (Observar, Decidir, Agir), implementando um la?o fechado de adapta??es em tempo de execu??o. O gerenciamento de QoS ? autoconsciente dos recursos do sistema e das aplica??es em execu??o, e pode decidir por adapta??es no n?vel de computa??o ou comunica??o, baseado em notifica??es das tarefas, monitoramento do ambiente, e monitoramento de atendimento de QoS. A autoadapta??o decide reativamente assim como proativamente. Uma t?cnica de aprendizagem do perfil das aplica??es ? proposta para tra?ar o comportamento das tarefas de tempo real, possibilitando a??es proativas. Resultados gerais mostram que o gerenciamento de QoS autoadaptativo proposto pode restaurar os n?veis de QoS para as aplica??es com um baixo custo no tempo de execu??o das aplica??es. Uma avalia??o abrangente, assumindo diversos benchmarks mostra que, mesmo sob diversas interfer?ncias de QoS nos n?veis de computa??o e comunica??o, o tempo de execu??o das aplica??es ? restaurado pr?ximo ao cen?rio ?timo, como 99,5% das viola??es de deadlines mitigadas. / Many-core systems-on-chip are the state-of-the-art in processing power, reaching from a dozen to thousands of processing elements (PE) in a single integrated circuit. General purpose many-cores assume a dynamic application admission, where the application set is unknown at design-time and applications may start their execution at any moment, inducing interference between them. Some applications may have real-time constraints to fulfill, requiring levels of quality of service (QoS) from the system. Due to the high degree of resource?s utilization unpredictability and the number of components to manage, self-adaptive properties become fundamental to support QoS at run-time. The literature provides several self-adaptive QoS proposals, targeting either communication (e.g., Network-on-Chip) or computation resources (e.g., CPU). However, to offer a complete QoS support, it is fundamental to provide a comprehensive self-awareness of the system?s resources, assuming adaptive techniques enabling to act simultaneously at the communication and computation levels to meet the applications' constraints. To cope with these requirements, this Thesis proposes a self-adaptive QoS infrastructure and management techniques, covering both the computation and communication levels. At the computation level, the QoS-driven infrastructure comprises a dynamic real-time task scheduler and a low overhead task migration protocol. These techniques ensure computation QoS by managing the CPU utilization and allocation. The novelty of the task scheduler is the support for dynamic real time constraints, which leverage more flexibility to tasks to explore the CPU according to a variable workload. The novelty of the task migration protocol is its low execution time overhead compared to the state-of-the-art. At the communication level, the proposed technique is a Circuit-Switching (CS) approach based on the Software Defined Networking (SDN) paradigm. The SDN paradigm for NoCs is an innovation of this Thesis and is achieved through a generic software and hardware architecture. For communication QoS, SDN is used to define CS paths at run-time. A self-adaptive QoS management following the ODA (Observe Decide Act) paradigm controls these QoS-driven infrastructures in an integrated way, implementing a closed loop for run time adaptations. The QoS management is self-aware of the system and running applications and can decide to take adaptations at computation or communication levels based on the task feedbacks, environment monitoring, and QoS fulfillment monitoring. The self-adaptation decides reactively as well as proactively. An online application profile learning technique is proposed to trace the behavior of the RT tasks and enabling the proactive actions. Results show that the proposed self-adaptive QoS management can restore the QoS level for the applications with a low overhead over the applications execution time. A broad evaluation, using known benchmarks, shows that even under severe QoS disturbances at computation and communication levels, the execution time of the application is restored near to the optimal scenario, mitigating 99.5% of deadline misses.

Identiferoai:union.ndltd.org:IBICT/oai:tede2.pucrs.br:tede/7946
Date16 March 2018
CreatorsRuaro, Marcelo
ContributorsMoraes, Fernando Gehm
PublisherPontif?cia Universidade Cat?lica do Rio Grande do Sul, Programa de P?s-Gradua??o em Ci?ncia da Computa??o, PUCRS, Brasil, Escola Polit?cnica
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da PUC_RS, instname:Pontifícia Universidade Católica do Rio Grande do Sul, instacron:PUC_RS
Rightsinfo:eu-repo/semantics/openAccess
Relation1974996533081274470, 500, 500, -862078257083325301

Page generated in 0.0031 seconds