Agrupamento de dados fuzzy colaborativo / Collaborative fuzzy clustering

Nas últimas décadas, as técnicas de mineração de dados têm desempenhado um importante papel em diversas áreas do conhecimento humano. Mais recentemente, essas ferramentas têm encontrado espaço em um novo e complexo domínio, nbo qual os dados a serem minerados estão fisicamente distribuídos. Nesse domínio, alguns algorithmos específicos para agrupamento de dados podem ser utilizados - em particular, algumas variantes do algoritmo amplamente Fuzzy C-Means (FCM), as quais têm sido investigadas sob o nome de agrupamento fuzzy colaborativo. Com o objetivo de superar algumas das limitações encontradas em dois desses algoritmos, cinco novos algoritmos foram desenvolvidos nesse trabalho. Esses algoritmos foram estudados em dois cenários específicos de aplicação que levam em conta duas suposições sobre os dados (i.e., se os dados são de uma mesma npopulação ou de diferentes populações). Na prática, tais suposições e a dificuldade em se definir alguns dos parâmetros (que possam ser requeridos), podemn orientar a escolha feita pelo usuário entre os algoitmos diponíveis. Nesse sentido, exemplos ilustrativos destacam as diferenças de desempenho entre os algoritmos estudados e desenvolvidos, permitindo derivar algumas conclusões que podem ser úteis ao aplicar agrupamento fuzzy colaborativo na prática. Análises de complexidade de tempo, espaço, e comunicação também foram realizadas / Data mining techniques have played in important role in several areas of human kwnowledge. More recently, these techniques have found space in a new and complex setting in which the data to be mined are physically distributed. In this setting algorithms for data clustering can be used, such as some variants of the widely used Fuzzy C-Means (FCM) algorithm that support clustering data ditributed across different sites. Those methods have been studied under different names, like collaborative and parallel fuzzy clustring. In this study, we offer some augmentation of the two FCM-based clustering algorithms used to cluster distributed data by arriving at some constructive ways of determining essential parameters of the algorithms (including the number of clusters) and forming a set systematically structured guidelines as to a selection of the specific algorithm dependeing upon a nature of the data environment and the assumption being made about the number of clusters. A thorough complexity analysis including space, time, and communication aspects is reported. A series of detailed numeric experiments is used to illustrate the main ideas discussed in the study

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07072011-150404
Date19 May 2011
CreatorsLuiz Fernando Sommaggio Coletta
ContributorsEduardo Raul Hruschka, André Carlos Ponce de Leon Ferreira de Carvalho, Alexandre Gonçalves Evsukoff
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds