Desenvolvimento de membranas de nanofibras a base de acetato de celulose do bagaço de cana-de-açúcar produzidas por eletrofiação para a incorporação de enzimas / Development of the nanofiber membranes based on cellulose acetate pulp from sugar cane produced by electrospinning to incorporate enzymes

Neste trabalho a celulose extraída do bagaço de cana-de-açúcar foi convertida para triacetato de celulose que foi utilizado na produção de nanomembranas obtidas através da técnica de eletrofiação. O acetato de celulose foi preparado adicionando-se 100 mL de ácido acético, 1 mL de ácido sulfúrico e 67 mL de anidrido acético para 1g de celulose do bagaço de cana deaçúcar. Foi obtido um rendimento de cerca de 1,3g do produto para cada 1g de bagaço utilizado no processo. O triacetato de celulose produzido foi caracterizado por meio de Análise de Infravermelho por Transformada de Fourier (FTIR). Os resultados mostraram um conjunto de bandas de baixa intensidade na região 3700 a 3100, uma banda intensa em 1750 cm-1 e uma banda intensa em 1230 cm-1. O grau de substituição foi de 2,8. Os resultados da Calorimetria Exploratória Diferencial (DSC) para a celulose comercial (Sigma®) apresentou dois picos endotérmico a 200ºC e 320ºC e um pico exotérmico a 340ºC, e a celulose do bagaço de cana-de-açúcar mostrou um pico endotérmico a 190ºC. O acetato de celulose comercial (Sigma®) apresentou dois picos endotérmicos a 185ºC e a 240ºC e o triacetato de celulose do bagaço de cana-de-açúcar mostrou quatro picos endotérmicos a 170ºC, 240ºC, 300ºC e 370ºC, respectivamente. As nanomembranas de triacetato de celulose foram produzidas utilizando-se várias soluções poliméricas, a solução polimérica mais adequada ao processo foi Acetona/Dimetilformamida (DMF 85:15 m/m) a 15% de triacetato de celulose 70/30 m/m Sigma®/Bagaço. Durante o processo de eletrofiação foram testadas as seguintes condições: voltagem (25 KV), fluxo (2-4 mL/h) e distância de (7-12 cm). As nanomembranas foram caracterizadas por Microscopia Eletrônica de Varredura (MEV); citotoxicidade onde os resultados obtidos indicando a biocompatibilidade das nanomembranas eletrofiadas; absorção de água, na faixa de 150% a 350% e perda de massa na faixa de 9% a 28%. Neste trabalho também foi realizado o estudo da incorporação da enzima bromelina, visando agregar propriedades cicatrizantes e anti-inflamatórias às nanomembrana e assim possibilitando sua futura utilização no tratamento de feridas, traumas, queimaduras, entre outros. Os melhores resultados na condição em recuperação de atividade enzimática foram de 67,5 / In this work, the cellulose extracted from sugarcane bagasse was converted to cellulose triacetate which was used in the production of nanomembranes obtained by electrospinning technique. The cellulose acetate was prepared by adding 100 mL of acetic acid, 1 mL of sulfuric acid and 67 mL of acetic anhydride to 1 g of cellulose pulp from sugar cane. A yield of about 1.3 g of product per gram of bagasse used in the process was obtained. The cellulose triacetate produced was characterized by analysis of Fourier Transform Infrared Spectroscopy (FTIR). The results show a set of low intensity bands in the region 3700 - 3100, an intense band at 1750 cm-1 and an intense band at 1230 cm-1. The degree of substitution calculated was 2.8. The results of Differential Scanning Calorimetry (DSC) of the commercial cellulose (Sigma®), presented two endothermic peaks at 200ºC, 320ºC and an exothermic peak at 340ºC, and the cellulose from sugarcane bagasse showed the endothermic peak at 190ºC. The commercial cellulose acetate (Sigma®) showed two endothermic peak 185ºC to 240°C and cellulose triacetate from sugarcane bagasse showed four endothermic peaks at 170°C, 240°C, 300°C and 370ºC respectively. The nanomembranes of cellulose triacetate were produced using some polymeric solutions, the polymeric solutions most appropriated was acetone/ dimethylformamide (DMF 85:15 w / w) to 15% cellulose triacetate, cellulose 70/30 w / w Sigma® / Bagasse. During the electrospinning process the following conditions were tested: voltage (25 kV), flow rate (2 - 4 mL/h) and distance (7 - 12 cm). The nanomembranes were characterized by Scanning Electron Microscopy (SEM); cytotoxicity the results indicate the biocompatibility of the electrospinning nanomembranes; and water absorption, yielding values between 150 and 350% mass loss and to values between 9 and 28%. In this study it was the incorporation of the enzyme bromelain, in order to add healing and anti-inflammatory properties to nanomembrane was also performed and thus allowing their future use in the treatment of wounds, traumas, burns, among others. Provided the best results in recovery of enzyme activity was about 67.5

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07122015-233822
Date09 October 2015
CreatorsMariana de Melo Brites
ContributorsSilgia Aparecida da Costa, Eliana Vieira Canettieri, João Paulo Pereira Marcicano
PublisherUniversidade de São Paulo, Têxtil e Moda, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0172 seconds